blob: 3d025d38d4dec0f355bab4c473cca1900219b77d [file] [log] [blame]
/*
* Copyright (C) 2009-2023 Apple Inc. All rights reserved.
* Copyright (C) 2019 the V8 project authors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "YarrJIT.h"
#include "AllowMacroScratchRegisterUsage.h"
#include "CCallHelpers.h"
#include "LinkBuffer.h"
#include "Options.h"
#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
#include "JITThunks.h"
#endif
#include "VM.h"
#include "Yarr.h"
#include "YarrCanonicalize.h"
#include "YarrDisassembler.h"
#include "YarrJITRegisters.h"
#include "YarrMatchingContextHolder.h"
#include <wtf/ASCIICType.h>
#include <wtf/BitVector.h>
#include <wtf/HexNumber.h>
#include <wtf/ListDump.h>
#include <wtf/MathExtras.h>
#include <wtf/TZoneMallocInlines.h>
#include <wtf/Threading.h>
#include <wtf/text/MakeString.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
#if ENABLE(YARR_JIT)
namespace JSC { namespace Yarr {
namespace YarrJITInternal {
static constexpr bool verbose = false;
}
static constexpr int32_t errorCodePoint = -1;
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
enum class TryReadUnicodeCharGenFirstNonBMPOptimization { DontUseOptimization, UseOptimization };
static MacroAssemblerCodeRef<JITThunkPtrTag> tryReadUnicodeCharSlowThunkGenerator(VM&);
#if ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
static MacroAssemblerCodeRef<JITThunkPtrTag> tryReadUnicodeCharIncForNonBMPSlowThunkGenerator(VM&);
#endif
#endif
#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
JSC_DECLARE_NOEXCEPT_JIT_OPERATION(operationAreCanonicallyEquivalent, bool, (unsigned, unsigned, CanonicalMode));
static MacroAssemblerCodeRef<JITThunkPtrTag> areCanonicallyEquivalentThunkGenerator(VM&);
// Since the generator areCanonicallyEquivalentThunkGenerator() needs to be static,
// we set the incoming argument registers to the thunk here and ASSERT at runtime
// that they match.
#if CPU(ARM64)
static constexpr GPRReg areCanonicallyEquivalentCharArgReg = ARM64Registers::x6;
static constexpr GPRReg areCanonicallyEquivalentPattCharArgReg = ARM64Registers::x7;
static constexpr GPRReg areCanonicallyEquivalentCanonicalModeArgReg = ARM64Registers::x10;
#elif CPU(X86_64)
static constexpr GPRReg areCanonicallyEquivalentCharArgReg = X86Registers::eax;
static constexpr GPRReg areCanonicallyEquivalentPattCharArgReg = X86Registers::r9;
static constexpr GPRReg areCanonicallyEquivalentCanonicalModeArgReg = X86Registers::r13;
// The thunk code assumes that we return the result to areCanonicallyEquivalentCharArgReg.
static_assert(areCanonicallyEquivalentCharArgReg == GPRInfo::returnValueGPR);
#endif
#endif
WTF_MAKE_TZONE_ALLOCATED_IMPL(BoyerMooreBitmap);
WTF_MAKE_TZONE_ALLOCATED_IMPL(BoyerMooreFastCandidates);
WTF_MAKE_TZONE_ALLOCATED_IMPL(YarrBoyerMooreData);
WTF_MAKE_TZONE_ALLOCATED_IMPL(YarrCodeBlock);
#if CPU(ARM64E)
JSC_ANNOTATE_JIT_OPERATION_RETURN(vmEntryToYarrJITAfter);
#endif
// We should pick the less frequently appearing character as a BM search's anchor to make BM search more and more efficient.
// This class takes some samples from the passed subject string to put weight on characters so that we can pick an optimal one adaptively.
class SubjectSampler {
public:
static constexpr unsigned sampleSize = 128;
explicit SubjectSampler(CharSize charSize)
: m_is8Bit(charSize == CharSize::Char8)
{
}
int32_t frequency(char16_t character) const
{
if (!m_size)
return 1;
return static_cast<int32_t>(m_samples[character & BoyerMooreBitmap::mapMask]) * sampleSize / m_size;
}
void sample(StringView string)
{
unsigned half = string.length() > sampleSize ? (string.length() - sampleSize) / 2 : 0;
unsigned end = std::min(string.length(), half + sampleSize);
if (string.is8Bit()) {
auto characters8 = string.span8();
for (unsigned i = half; i < end; ++i)
add(characters8[i]);
} else {
auto characters16 = string.span16();
for (unsigned i = half; i < end; ++i)
add(characters16[i]);
}
}
void dump() const
{
dataLogLn("Sampling Results size:(", m_size, ")");
for (unsigned i = 0; i < BoyerMooreBitmap::mapSize; ++i)
dataLogLn(" [", makeString(pad(' ', 3, i)), "] ", m_samples[i]);
}
bool is8Bit() const { return m_is8Bit; }
private:
inline void add(char16_t character)
{
++m_size;
++m_samples[character & BoyerMooreBitmap::mapMask];
}
std::array<uint8_t, BoyerMooreBitmap::mapSize> m_samples { };
uint8_t m_size { };
bool m_is8Bit { true };
};
void BoyerMooreFastCandidates::dump(PrintStream& out) const
{
if (!isValid()) {
out.print("isValid:(false)");
return;
}
out.print("isValid:(true),characters:(", listDump(m_characters), ")");
}
class BoyerMooreInfo {
WTF_MAKE_NONCOPYABLE(BoyerMooreInfo);
WTF_MAKE_TZONE_ALLOCATED(BoyerMooreInfo);
public:
static constexpr unsigned maxLength = 32;
explicit BoyerMooreInfo(CharSize charSize, unsigned length)
: m_characters(length)
, m_charSize(charSize)
{
ASSERT(this->length() <= maxLength);
}
unsigned length() const { return m_characters.size(); }
void shortenLength(unsigned length)
{
if (length <= this->length())
m_characters.shrink(length);
}
void set(unsigned index, char32_t character)
{
m_characters[index].add(m_charSize, character);
}
void setAll(unsigned index)
{
m_characters[index].setAll();
}
void addCharacters(unsigned index, const Vector<char32_t>& characters)
{
m_characters[index].addCharacters(m_charSize, characters);
}
void addRanges(unsigned index, const Vector<CharacterRange>& range)
{
m_characters[index].addRanges(m_charSize, range);
}
static UniqueRef<BoyerMooreInfo> create(CharSize charSize, unsigned length)
{
return makeUniqueRef<BoyerMooreInfo>(charSize, length);
}
std::optional<std::tuple<unsigned, unsigned>> findWorthwhileCharacterSequenceForLookahead(const SubjectSampler&) const;
std::tuple<BoyerMooreBitmap::Map, BoyerMooreFastCandidates> createCandidateBitmap(unsigned begin, unsigned end) const;
void dump(PrintStream&) const;
private:
std::tuple<int32_t, unsigned, unsigned> findBestCharacterSequence(const SubjectSampler&, unsigned numberOfCandidatesLimit) const;
Vector<BoyerMooreBitmap> m_characters;
CharSize m_charSize;
};
WTF_MAKE_TZONE_ALLOCATED_IMPL(BoyerMooreInfo);
std::tuple<int32_t, unsigned, unsigned> BoyerMooreInfo::findBestCharacterSequence(const SubjectSampler& sampler, unsigned numberOfCandidatesLimit) const
{
int32_t biggestPoint = INT32_MIN;
unsigned beginResult = 0;
unsigned endResult = 0;
for (unsigned index = 0; index < length();) {
while (index < length() && m_characters[index].count() > numberOfCandidatesLimit)
++index;
if (index == length())
break;
unsigned begin = index;
BoyerMooreBitmap::Map map { };
for (; index < length() && m_characters[index].count() <= numberOfCandidatesLimit; ++index)
map.merge(m_characters[index].map());
int32_t frequency = 0;
map.forEachSetBit([&](unsigned index) {
frequency += sampler.frequency(index);
});
// Cutoff at 50%. If we could encounter the character more than 50%, then BM search would be useless probably.
int32_t matchingProbability = (BoyerMooreBitmap::mapSize / 2) - frequency;
int32_t point = (index - begin) * matchingProbability;
if (point > biggestPoint) {
biggestPoint = point;
beginResult = begin;
endResult = index;
}
}
return std::tuple { biggestPoint, beginResult, endResult };
}
std::optional<std::tuple<unsigned, unsigned>> BoyerMooreInfo::findWorthwhileCharacterSequenceForLookahead(const SubjectSampler& sampler) const
{
// If candiates-per-character becomes larger, then sequence is not profitable since this sequence will match against
// too many characters. But if we limit candiates-per-character smaller, it is possible that we only find very short
// character sequence. We start with low limit, then enlarging the limit to find more and more profitable
// character sequence.
int32_t biggestPoint = INT32_MIN;
unsigned begin = 0;
unsigned end = 0;
constexpr unsigned maxCandidatesPerCharacter = 32;
static_assert(maxCandidatesPerCharacter < BoyerMooreBitmap::mapSize);
for (unsigned limit = 4; limit < maxCandidatesPerCharacter; limit *= 2) {
auto [newPoint, newBegin, newEnd] = findBestCharacterSequence(sampler, limit);
if (newPoint > biggestPoint) {
biggestPoint = newPoint;
begin = newBegin;
end = newEnd;
}
}
if (biggestPoint < 0)
return std::nullopt;
return std::tuple { begin, end };
}
std::tuple<BoyerMooreBitmap::Map, BoyerMooreFastCandidates> BoyerMooreInfo::createCandidateBitmap(unsigned begin, unsigned end) const
{
BoyerMooreBitmap::Map map { };
BoyerMooreFastCandidates charactersFastPath;
for (unsigned index = begin; index < end; ++index) {
auto& bmBitmap = m_characters[index];
map.merge(bmBitmap.map());
charactersFastPath.merge(bmBitmap.charactersFastPath());
}
return std::tuple { WTFMove(map), WTFMove(charactersFastPath) };
}
void BoyerMooreInfo::dump(PrintStream& out) const
{
out.println("BoyerMooreInfo size:(", m_characters.size(), ")");
unsigned index = 0;
for (auto& map : m_characters)
out.println(" [", makeString(pad(' ', 3, index++)), "] ", map);
}
void BoyerMooreBitmap::dump(PrintStream& out) const
{
out.print(m_map);
}
static constexpr MacroAssembler::TrustedImm32 surrogateTagMask = MacroAssembler::TrustedImm32(0xdc00dc00);
static constexpr MacroAssembler::TrustedImm32 surrogatePairTags = MacroAssembler::TrustedImm32(0xdc00d800);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
template<TryReadUnicodeCharGenFirstNonBMPOptimization useNonBMPOptimization>
void tryReadUnicodeCharImpl(VM& vm, CCallHelpers& jit, MacroAssembler::RegisterID resultReg)
{
MacroAssembler::JumpList slowCases;
MacroAssembler::JumpList isBMP;
MacroAssembler::JumpList done;
YarrJITDefaultRegisters regs;
if (resultReg != regs.regT0)
jit.swap(regs.regT0, resultReg);
// Check if we can read two UTF-16 characters at once.
jit.add64(MacroAssembler::TrustedImm32(4), regs.regUnicodeInputAndTrail, regs.unicodeAndSubpatternIdTemp);
slowCases.append(jit.branchPtr(MacroAssembler::Above, regs.unicodeAndSubpatternIdTemp, regs.endOfStringAddress));
// Load and try to process two UTF-16 characters.
// If they are a proper surrogate pair, compute the non-BMP codepoint.
jit.load32(MacroAssembler::Address(regs.regUnicodeInputAndTrail), resultReg);
#if CPU(ARM64)
jit.and32AndSetFlags(surrogateTagMask, resultReg, regs.unicodeAndSubpatternIdTemp);
isBMP.append(jit.branch(MacroAssembler::Zero));
#else
jit.and32(surrogateTagMask, resultReg, regs.unicodeAndSubpatternIdTemp);
isBMP.append(jit.branch32(MacroAssembler::Equal, regs.unicodeAndSubpatternIdTemp, MacroAssembler::TrustedImm32(0)));
#endif
slowCases.append(jit.branch32(MacroAssembler::NotEqual, regs.unicodeAndSubpatternIdTemp, surrogatePairTags));
// Create the UTF32 character from the surrogate pair.
#if CPU(ARM64)
jit.urshift32(resultReg, MacroAssembler::TrustedImm32(16), regs.unicodeAndSubpatternIdTemp);
jit.insertBitField32(resultReg, MacroAssembler::TrustedImm32(10), MacroAssembler::TrustedImm32(10), regs.unicodeAndSubpatternIdTemp);
jit.add32(MacroAssembler::TrustedImm32(0x10000), regs.unicodeAndSubpatternIdTemp, resultReg);
#else
jit.and32(MacroAssembler::TrustedImm32(0xffff), resultReg, regs.unicodeAndSubpatternIdTemp);
jit.lshift32(MacroAssembler::TrustedImm32(10), regs.unicodeAndSubpatternIdTemp);
jit.urshift32(resultReg, MacroAssembler::TrustedImm32(16), resultReg);
jit.getEffectiveAddress(MacroAssembler::BaseIndex(regs.unicodeAndSubpatternIdTemp, resultReg, MacroAssembler::TimesOne, -U16_SURROGATE_OFFSET), resultReg);
#endif
#if ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
if (useNonBMPOptimization == TryReadUnicodeCharGenFirstNonBMPOptimization::UseOptimization)
jit.move(MacroAssembler::TrustedImm32(1), regs.firstCharacterAdditionalReadSize);
#endif
done.append(jit.jump());
isBMP.link(jit);
jit.and32(MacroAssembler::TrustedImm32(0xffff), resultReg);
done.append(jit.jump());
slowCases.link(&jit);
#if ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
if constexpr (useNonBMPOptimization == TryReadUnicodeCharGenFirstNonBMPOptimization::UseOptimization)
jit.nearCallThunk(CodeLocationLabel { vm.getCTIStub(tryReadUnicodeCharIncForNonBMPSlowThunkGenerator).template retaggedCode<NoPtrTag>() });
else
#endif
jit.nearCallThunk(CodeLocationLabel { vm.getCTIStub(tryReadUnicodeCharSlowThunkGenerator).template retaggedCode<NoPtrTag>() });
done.link(&jit);
if (resultReg != regs.regT0)
jit.swap(regs.regT0, resultReg);
}
template<TryReadUnicodeCharGenFirstNonBMPOptimization useNonBMPOptimization>
void tryReadUnicodeCharSlowImpl(CCallHelpers& jit)
{
MacroAssembler::JumpList bmpOnly;
MacroAssembler::JumpList isBMP;
MacroAssembler::JumpList notSurrogatePair;
MacroAssembler::JumpList checkForDanglingSurrogates;
MacroAssembler::JumpList bmpDone;
MacroAssembler::JumpList haveResult;
YarrJITDefaultRegisters regs;
// This code generator is used to build two variations of a character reader that handles Unicode non-BMP surrogate pairs.
// This code generator is used to build thunks or as inline code. Its "calling convention" is unconventional.
// It assumes the following registers are already populated with these values:
// regs.regUnicodeInputAndTrail is the string address to start reading from.
// regs.input contains the pointer of the beginning of the string.
// regs.endOfStringAddress contains the address one past the end of the string.
// For architectures that put the surrogate masks and tags in registers,
// regs.surrogateTagMask contains 0xdc00dc00 and regs.surrogatePairTags contains 0xdc00d800.
// When the YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP optimization is enabled and used,
// regs.firstCharacterAdditionalReadSize is used to advance 2 characters when we read a non-BMP codepoint.
// regs.unicodeAndSubpatternIdTemp is used as a temporary.
// The result is returned via regs.regT0.
auto resultReg = regs.regT0;
// Check if we can read two UTF-16 characters at once.
jit.add64(MacroAssembler::TrustedImm32(4), regs.regUnicodeInputAndTrail, regs.unicodeAndSubpatternIdTemp);
bmpOnly.append(jit.branchPtr(MacroAssembler::Above, regs.unicodeAndSubpatternIdTemp, regs.endOfStringAddress));
// Load and try to process two UTF-16 characters.
// If they are a proper surrogate pair, compute the non-BMP codepoint.
jit.load32(MacroAssembler::Address(regs.regUnicodeInputAndTrail), resultReg);
#if CPU(ARM64)
jit.and32AndSetFlags(surrogateTagMask, resultReg, regs.unicodeAndSubpatternIdTemp);
isBMP.append(jit.branch(MacroAssembler::Zero));
#else
jit.and32(surrogateTagMask, resultReg, regs.unicodeAndSubpatternIdTemp);
isBMP.append(jit.branch32(MacroAssembler::Equal, regs.unicodeAndSubpatternIdTemp, MacroAssembler::TrustedImm32(0)));
#endif
// if it is surrogate pair, we already handled it in the inlined code.
// Check if we can return the dangling surrogate or if it is part of a valid pair where the leading surrogate
// that is offset one character before the load pointer.
jit.and32(MacroAssembler::TrustedImm32(0xffff), regs.unicodeAndSubpatternIdTemp);
// If it is a leading surrogate, the check above proved that it wasn't followed by a trailing surrogate.
// If so fall through, otherwise perform other dangling checks.
checkForDanglingSurrogates.append(jit.branch32(MacroAssembler::Equal, regs.unicodeAndSubpatternIdTemp, MacroAssembler::TrustedImm32(0xdc00)));
isBMP.link(jit);
jit.and32(MacroAssembler::TrustedImm32(0xffff), resultReg);
jit.ret();
checkForDanglingSurrogates.link(&jit);
// Remove the second character that we loaded.
jit.and32(MacroAssembler::TrustedImm32(0xffff), resultReg);
MacroAssembler::Label checkForDanglingSurrogatesLabel(&jit);
// Can ew read the prior character?
jit.subPtr(MacroAssembler::TrustedImm32(2), regs.regUnicodeInputAndTrail);
// If not, we branch to return the dangling surrogate.
bmpDone.append(jit.branchPtr(MacroAssembler::Below, regs.regUnicodeInputAndTrail, regs.input));
// Load the prior character and check if it is a leading surrogate.
jit.load16Unaligned(MacroAssembler::Address(regs.regUnicodeInputAndTrail), regs.regUnicodeInputAndTrail);
jit.and32(surrogateTagMask, regs.regUnicodeInputAndTrail, regs.unicodeAndSubpatternIdTemp);
// It wasn't a leading surrogate, so return the original dangling surrogate.
bmpDone.append(jit.branch32(MacroAssembler::NotEqual, regs.unicodeAndSubpatternIdTemp, MacroAssembler::TrustedImm32(0xd800)));
// The prior characters was a leading surrogate, Ecma262 says that this is an error, so return the error code point.
jit.move(MacroAssembler::TrustedImm32(errorCodePoint), resultReg);
bmpDone.append(jit.jump());
bmpOnly.link(&jit);
// Can't read two characters, then just read one.
jit.load16Unaligned(MacroAssembler::Address(regs.regUnicodeInputAndTrail), resultReg);
// Is the character a trailing surrogate?
jit.and32(surrogateTagMask, resultReg, regs.unicodeAndSubpatternIdTemp);
// If so, branch back to handle the possibility that we loaded the second surrogate of a proper pair.
jit.branch32(MacroAssembler::Equal, regs.unicodeAndSubpatternIdTemp, MacroAssembler::TrustedImm32(0xdc00)).linkTo(checkForDanglingSurrogatesLabel, jit);
bmpDone.link(&jit);
haveResult.link(&jit);
}
#endif // ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
template<class YarrJITRegs = YarrJITDefaultRegisters>
class YarrGenerator final : public YarrJITInfo {
class MatchTargets {
public:
enum class PreferredTarget : uint8_t {
NoPreference = 0,
PreferMatchSucceeded = 1,
MatchFailFallThrough = PreferMatchSucceeded,
PreferMatchFailed = 2,
MatchSuccessFallThrough = PreferMatchFailed
};
MatchTargets(PreferredTarget preferredTarget = PreferredTarget::NoPreference)
: m_preferredTarget(preferredTarget)
{ }
MatchTargets(MacroAssembler::JumpList& matchDest)
: m_matchSucceededTargets(&matchDest)
, m_preferredTarget(PreferredTarget::PreferMatchSucceeded)
{ }
MatchTargets(MacroAssembler::JumpList& compareDest, PreferredTarget preferredTarget)
: m_preferredTarget(preferredTarget)
{
if (preferredTarget == PreferredTarget::PreferMatchFailed)
m_matchFailedTargets = &compareDest;
else
m_matchSucceededTargets = &compareDest;
}
MatchTargets(MacroAssembler::JumpList& matchDest, MacroAssembler::JumpList& failDest, PreferredTarget preferredTarget = PreferredTarget::NoPreference)
: m_matchSucceededTargets(&matchDest)
, m_matchFailedTargets(&failDest)
, m_preferredTarget(preferredTarget)
{ }
PreferredTarget preferredTarget()
{
return m_preferredTarget;
}
bool hasSucceedTarget()
{
return m_matchSucceededTargets != nullptr;
}
bool hasFailedTarget()
{
return m_matchFailedTargets != nullptr;
}
MacroAssembler::JumpList& matchSucceeded() { return *m_matchSucceededTargets; }
MacroAssembler::JumpList& matchFailed() { return *m_matchFailedTargets; }
void appendSucceeded(MacroAssembler::Jump jump)
{
ASSERT(m_matchSucceededTargets != nullptr);
m_matchSucceededTargets->append(jump);
}
void appendFailed(MacroAssembler::Jump jump)
{
ASSERT(m_matchFailedTargets != nullptr);
m_matchFailedTargets->append(jump);
}
private:
MacroAssembler::JumpList* m_matchSucceededTargets { nullptr };
MacroAssembler::JumpList* m_matchFailedTargets { nullptr };
PreferredTarget m_preferredTarget;
};
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
struct ParenContextSizes {
size_t m_numSubpatterns;
size_t m_numDuplicateNamedCaptures;
size_t m_frameSlots;
ParenContextSizes(size_t numSubpatterns, size_t numDuplicateNamedCaptures, size_t frameSlots)
: m_numSubpatterns(numSubpatterns)
, m_numDuplicateNamedCaptures(numDuplicateNamedCaptures)
, m_frameSlots(frameSlots)
{
}
size_t numSubpatterns() { return m_numSubpatterns; }
size_t numDuplicateNamedCaptures() { return m_numDuplicateNamedCaptures; }
size_t frameSlots() { return m_frameSlots; }
};
struct ParenContext {
struct ParenContext* next;
struct BeginAndMatchAmount {
uint32_t begin;
uint32_t matchAmount;
} beginAndMatchAmount;
uintptr_t returnAddress;
struct Subpatterns {
unsigned start;
unsigned end;
} subpatterns[0];
unsigned duplicateNamedCaptures[0];
uintptr_t frameSlots[0];
static size_t sizeFor(ParenContextSizes& parenContextSizes)
{
return sizeof(ParenContext) + sizeof(Subpatterns) * parenContextSizes.numSubpatterns() + sizeof(unsigned) * (parenContextSizes.numDuplicateNamedCaptures()) + sizeof(uintptr_t) * parenContextSizes.frameSlots();
}
static constexpr ptrdiff_t nextOffset()
{
return offsetof(ParenContext, next);
}
static constexpr ptrdiff_t beginOffset()
{
return offsetof(ParenContext, beginAndMatchAmount) + offsetof(BeginAndMatchAmount, begin);
}
static constexpr ptrdiff_t matchAmountOffset()
{
return offsetof(ParenContext, beginAndMatchAmount) + offsetof(BeginAndMatchAmount, matchAmount);
}
static constexpr ptrdiff_t returnAddressOffset()
{
return offsetof(ParenContext, returnAddress);
}
static constexpr ptrdiff_t subpatternOffset(size_t subpattern)
{
return offsetof(ParenContext, subpatterns) + (subpattern - 1) * sizeof(Subpatterns);
}
static constexpr ptrdiff_t duplicateNamedCaptureOffset(ParenContextSizes& parenContextSizes, size_t namedCapture)
{
return offsetof(ParenContext, subpatterns) + (parenContextSizes.numSubpatterns()) * sizeof(Subpatterns) + (namedCapture - 1) * sizeof(unsigned);
}
static ptrdiff_t savedFrameOffset(ParenContextSizes& parenContextSizes)
{
return offsetof(ParenContext, subpatterns) + (parenContextSizes.numSubpatterns()) * sizeof(Subpatterns) + (parenContextSizes.numDuplicateNamedCaptures()) * sizeof(unsigned);
}
};
void allocateParenContext(MacroAssembler::RegisterID result)
{
m_hitMatchLimit.append(m_jit.branchSub32(MacroAssembler::Zero, MacroAssembler::TrustedImm32(1), m_regs.remainingMatchCount));
// Try to allocate from freelist first.
MacroAssembler::Jump allocateFromStack;
if (m_regs.freelistRegister != InvalidGPRReg) {
allocateFromStack = m_jit.branchTestPtr(MacroAssembler::Zero, m_regs.freelistRegister);
m_jit.move(m_regs.freelistRegister, result);
m_jit.loadPtr(MacroAssembler::Address(m_regs.freelistRegister, ParenContext::nextOffset()), m_regs.freelistRegister);
} else {
m_jit.loadPtr(MacroAssembler::Address(m_regs.matchingContext, MatchingContextHolder::offsetOfFreeList()), result);
allocateFromStack = m_jit.branchTestPtr(MacroAssembler::Zero, result);
m_jit.transferPtr(MacroAssembler::Address(result, ParenContext::nextOffset()), MacroAssembler::Address(m_regs.matchingContext, MatchingContextHolder::offsetOfFreeList()));
}
auto done = m_jit.jump();
// Freelist is null, allocate from stack.
allocateFromStack.link(&m_jit);
size_t parenContextSize = WTF::roundUpToMultipleOf<stackAlignmentBytes()>(ParenContext::sizeFor(m_parenContextSizes));
m_jit.subPtr(MacroAssembler::stackPointerRegister, MacroAssembler::TrustedImm32(static_cast<int32_t>(parenContextSize)), result);
m_abortExecution.append(m_jit.branchPtr(MacroAssembler::Above, MacroAssembler::Address(m_regs.matchingContext, MatchingContextHolder::offsetOfStackLimit()), result));
m_jit.move(result, MacroAssembler::stackPointerRegister);
done.link(&m_jit);
}
void freeParenContext(MacroAssembler::RegisterID headPtrRegister)
{
if (m_regs.freelistRegister != InvalidGPRReg) {
m_jit.storePtr(m_regs.freelistRegister, MacroAssembler::Address(headPtrRegister, ParenContext::nextOffset()));
m_jit.move(headPtrRegister, m_regs.freelistRegister);
} else {
m_jit.transferPtr(MacroAssembler::Address(m_regs.matchingContext, MatchingContextHolder::offsetOfFreeList()), MacroAssembler::Address(headPtrRegister, ParenContext::nextOffset()));
m_jit.storePtr(headPtrRegister, MacroAssembler::Address(m_regs.matchingContext, MatchingContextHolder::offsetOfFreeList()));
}
}
void storeBeginAndMatchAmountToParenContext(MacroAssembler::RegisterID beginGPR, MacroAssembler::RegisterID matchAmountGPR, MacroAssembler::RegisterID parenContextGPR)
{
static_assert(ParenContext::beginOffset() + 4 == ParenContext::matchAmountOffset());
m_jit.storePair32(beginGPR, matchAmountGPR, parenContextGPR, MacroAssembler::TrustedImm32(ParenContext::beginOffset()));
}
void loadBeginAndMatchAmountFromParenContext(MacroAssembler::RegisterID parenContextGPR, MacroAssembler::RegisterID beginGPR, MacroAssembler::RegisterID matchAmountGPR)
{
static_assert(ParenContext::beginOffset() + 4 == ParenContext::matchAmountOffset());
m_jit.loadPair32(parenContextGPR, MacroAssembler::TrustedImm32(ParenContext::beginOffset()), beginGPR, matchAmountGPR);
}
void saveParenContext(MacroAssembler::RegisterID parenContextReg, MacroAssembler::RegisterID tempReg, unsigned firstSubpattern, unsigned lastSubpattern, unsigned subpatternBaseFrameLocation)
{
BitVector duplicateNamedCaptureGroups;
bool hasNamedCaptures = m_pattern.hasDuplicateNamedCaptureGroups();
loadFromFrame(subpatternBaseFrameLocation + BackTrackInfoParentheses::matchAmountIndex(), tempReg);
storeBeginAndMatchAmountToParenContext(m_regs.index, tempReg, parenContextReg);
loadFromFrame(subpatternBaseFrameLocation + BackTrackInfoParentheses::returnAddressIndex(), tempReg);
m_jit.storePtr(tempReg, MacroAssembler::Address(parenContextReg, ParenContext::returnAddressOffset()));
if (m_compileMode == JITCompileMode::IncludeSubpatterns) {
for (unsigned subpattern = firstSubpattern; subpattern <= lastSubpattern; subpattern++) {
static_assert(is64Bit());
m_jit.load64(MacroAssembler::Address(m_regs.output, (subpattern << 1) * sizeof(unsigned)), tempReg);
m_jit.store64(tempReg, MacroAssembler::Address(parenContextReg, ParenContext::subpatternOffset(subpattern)));
if (hasNamedCaptures) {
unsigned duplicateNamedGroup = m_pattern.m_duplicateNamedGroupForSubpatternId[subpattern];
if (duplicateNamedGroup)
duplicateNamedCaptureGroups.set(duplicateNamedGroup);
}
clearSubpatternStart(subpattern);
}
for (unsigned duplicateNamedGroupId : duplicateNamedCaptureGroups) {
m_jit.load32(MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(unsigned))), tempReg);
m_jit.store32(tempReg, MacroAssembler::Address(parenContextReg, ParenContext::duplicateNamedCaptureOffset(m_parenContextSizes, duplicateNamedGroupId)));
m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(unsigned))));
}
}
subpatternBaseFrameLocation += YarrStackSpaceForBackTrackInfoParentheses;
for (unsigned frameLocation = subpatternBaseFrameLocation; frameLocation < m_parenContextSizes.frameSlots(); frameLocation++) {
loadFromFrame(frameLocation, tempReg);
m_jit.storePtr(tempReg, MacroAssembler::Address(parenContextReg, ParenContext::savedFrameOffset(m_parenContextSizes) + frameLocation * sizeof(uintptr_t)));
}
}
void restoreParenContext(MacroAssembler::RegisterID parenContextReg, MacroAssembler::RegisterID tempReg, unsigned firstSubpattern, unsigned lastSubpattern, unsigned subpatternBaseFrameLocation)
{
BitVector duplicateNamedCaptureGroups;
bool hasNamedCaptures = m_pattern.hasDuplicateNamedCaptureGroups();
loadBeginAndMatchAmountFromParenContext(parenContextReg, m_regs.index, tempReg);
storeToFrame(m_regs.index, subpatternBaseFrameLocation + BackTrackInfoParentheses::beginIndex());
storeToFrame(tempReg, subpatternBaseFrameLocation + BackTrackInfoParentheses::matchAmountIndex());
m_jit.loadPtr(MacroAssembler::Address(parenContextReg, ParenContext::returnAddressOffset()), tempReg);
storeToFrame(tempReg, subpatternBaseFrameLocation + BackTrackInfoParentheses::returnAddressIndex());
if (m_compileMode == JITCompileMode::IncludeSubpatterns) {
for (unsigned subpattern = firstSubpattern; subpattern <= lastSubpattern; subpattern++) {
static_assert(is64Bit());
m_jit.load64(MacroAssembler::Address(parenContextReg, ParenContext::subpatternOffset(subpattern)), tempReg);
m_jit.store64(tempReg, MacroAssembler::Address(m_regs.output, (subpattern << 1) * sizeof(unsigned)));
if (hasNamedCaptures) {
unsigned duplicateNamedGroup = m_pattern.m_duplicateNamedGroupForSubpatternId[subpattern];
if (duplicateNamedGroup)
duplicateNamedCaptureGroups.set(duplicateNamedGroup);
}
}
for (unsigned duplicateNamedGroupId : duplicateNamedCaptureGroups) {
m_jit.load32(MacroAssembler::Address(parenContextReg, ParenContext::duplicateNamedCaptureOffset(m_parenContextSizes, duplicateNamedGroupId)), tempReg);
m_jit.store32(tempReg, MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
}
}
subpatternBaseFrameLocation += YarrStackSpaceForBackTrackInfoParentheses;
for (unsigned frameLocation = subpatternBaseFrameLocation; frameLocation < m_parenContextSizes.frameSlots(); frameLocation++) {
m_jit.loadPtr(MacroAssembler::Address(parenContextReg, ParenContext::savedFrameOffset(m_parenContextSizes) + frameLocation * sizeof(uintptr_t)), tempReg);
storeToFrame(tempReg, frameLocation);
}
}
#endif
void optimizeAlternative(PatternAlternative* alternative)
{
if (!alternative->m_terms.size())
return;
for (unsigned i = 0; i < alternative->m_terms.size() - 1; ++i) {
PatternTerm& term = alternative->m_terms[i];
PatternTerm& nextTerm = alternative->m_terms[i + 1];
// We can move BMP only character classes after fixed character terms.
if ((term.type == PatternTerm::Type::CharacterClass)
&& (term.quantityType == QuantifierType::FixedCount)
&& (!m_decodeSurrogatePairs || (term.characterClass->hasOneCharacterSize() && !term.m_invert))
&& (nextTerm.type == PatternTerm::Type::PatternCharacter)
&& (nextTerm.quantityType == QuantifierType::FixedCount)) {
PatternTerm termCopy = term;
alternative->m_terms[i] = nextTerm;
alternative->m_terms[i + 1] = termCopy;
}
}
}
constexpr static unsigned MaximumCharacterClassSizeForBitTest = 8 * sizeof(UCPURegister);
using CharacterBitSet = WTF::BitSet<MaximumCharacterClassSizeForBitTest>;
void matchCharacterClassByBitTest(MacroAssembler::RegisterID character, MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& matchDest, char32_t min, char32_t max, CharacterBitSet mask)
{
switch (mask.count()) {
case 0:
return;
case 1:
case 2:
case 3:
case 4:
// If the set is small enough, still defer to a series of branches.
mask.forEachSetBit([&](size_t value) {
matchDest.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::TrustedImm32(min + value)));
return IterationStatus::Continue;
});
break;
default: {
// Otherwise, actually perform the bit test.
#if CPU(REGISTER64)
m_jit.sub32(character, MacroAssembler::Imm32(static_cast<unsigned>(min)), scratch);
MacroAssembler::Jump notInVector = m_jit.branch32(MacroAssembler::Above, scratch, MacroAssembler::TrustedImm32(max - min));
m_jit.lshift64(MacroAssembler::TrustedImm32(1), scratch, scratch);
matchDest.append(m_jit.branchTest64(MacroAssembler::NonZero, scratch, MacroAssembler::TrustedImm64(mask.storage()[0])));
#else
m_jit.sub32(character, MacroAssembler::Imm32(static_cast<unsigned>(min)), scratch);
MacroAssembler::Jump notInVector = m_jit.branch32(MacroAssembler::Above, scratch, MacroAssembler::TrustedImm32(max - min));
m_jit.lshift32(MacroAssembler::TrustedImm32(1), scratch, scratch);
matchDest.append(m_jit.branchTest32(MacroAssembler::NonZero, scratch, MacroAssembler::TrustedImm32(mask.storage()[0])));
#endif
notInVector.link(&m_jit);
}
}
}
void matchCharacterClassSet(MacroAssembler::RegisterID character, MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& matchDest, std::span<const char32_t> matches)
{
if (matches.empty())
return;
if (matches.size() == 1) {
matchDest.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::Imm32(static_cast<unsigned>(matches.front()))));
return;
}
// If we have multiple matches close together (not necessarily contiguous), we
// can try a biased bitmask - subtract the minimum match from the character,
// then see if it's present in a precomputed mask. We keep the bitset size quite
// small in order to keep it easy to materialize - this approach lets us avoid
// a load or lookup table in favor of just masking against an immediate.
char32_t min = matches.front();
char32_t max = matches.back();
ASSERT(max > min);
if ((max - min) < MaximumCharacterClassSizeForBitTest) {
CharacterBitSet mask;
for (char32_t character : matches)
mask.set(character - min);
matchCharacterClassByBitTest(character, scratch, matchDest, min, max, mask);
return;
}
// We have too many matches to handle in a single set, but we may be able to
// recursively group some of our matches together. Worst case, we just do a
// character-by-character match. Greedily matching is potentially suboptimal,
// but I doubt worth spending time doing better.
size_t lastStart = 0;
for (size_t index = 1; index < matches.size(); ++index) {
if ((matches[index] - matches[lastStart]) >= MaximumCharacterClassSizeForBitTest) {
matchCharacterClassSet(character, scratch, matchDest, matches.subspan(lastStart, index - lastStart));
lastStart = index;
}
}
if (lastStart < matches.size())
matchCharacterClassSet(character, scratch, matchDest, matches.subspan(lastStart));
}
void matchCharacterClassRange(MacroAssembler::RegisterID character, MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& failures, MacroAssembler::JumpList& matchDest, std::span<const CharacterRange> ranges, std::span<const char32_t> matches, bool& shouldGenerateFailureJump, bool isTopLevel)
{
if (ranges.size() == 1 && !matches.size()) {
matchCharacterClassOnlyOneRange(character, scratch, failures, ranges.front());
matchDest.append(m_jit.jump());
shouldGenerateFailureJump = false;
return;
}
ASSERT(ranges.size()); // We could handle this case, but we shouldn't expect to reach here without any ranges.
// Let's first see if all our ranges and matches neatly fit into a bitvector...
uint32_t min = ranges.front().begin;
uint32_t max = ranges.back().end;
if (matches.size()) {
min = std::min<uint32_t>(min, matches.front());
max = std::max<uint32_t>(max, matches.back());
}
if ((max - min) < MaximumCharacterClassSizeForBitTest) {
CharacterBitSet mask;
for (auto range : ranges) {
for (char32_t ch = range.begin; ch <= range.end; ++ch)
mask.set(ch - min);
}
for (auto character : matches)
mask.set(character - min);
matchCharacterClassByBitTest(character, scratch, matchDest, min, max, mask);
return;
}
// Otherwise, binary search the ranges and matches. We still want to take advantage of a bitvector test
// if possible, so we greedily add ranges to the median as long as we fit within the bit test size.
unsigned whichFirst = ranges.size() >> 1;
unsigned whichLast = whichFirst;
char32_t lo = ranges[whichFirst].begin;
char32_t hi = ranges[whichLast].end;
while (whichLast < ranges.size() - 1) {
char32_t nextHi = ranges[whichLast + 1].end;
if (nextHi - lo < MaximumCharacterClassSizeForBitTest) {
whichLast++;
hi = nextHi;
} else
break;
}
// First, explore any matches below the minimum of the current range.
unsigned smallerMatchCount = 0;
while (smallerMatchCount < matches.size() && matches[smallerMatchCount] < lo)
smallerMatchCount++;
// Otherwise, explore any matches beyond the maximum of the current range.
unsigned higherMatchStart = smallerMatchCount;
while (higherMatchStart < matches.size() && matches[higherMatchStart] <= hi)
higherMatchStart++;
if (whichFirst) {
MacroAssembler::Jump loOrAbove = m_jit.branch32(MacroAssembler::GreaterThanOrEqual, character, MacroAssembler::Imm32(static_cast<unsigned>(lo)));
bool shouldGenerateFailureJump = true;
matchCharacterClassRange(character, scratch, failures, matchDest, ranges.first(whichFirst), matches.first(smallerMatchCount), shouldGenerateFailureJump, false);
if (shouldGenerateFailureJump)
failures.append(m_jit.jump());
loOrAbove.link(&m_jit);
} else if (smallerMatchCount) {
MacroAssembler::Jump loOrAbove = m_jit.branch32(MacroAssembler::GreaterThanOrEqual, character, MacroAssembler::Imm32(static_cast<unsigned>(lo)));
matchCharacterClassSet(character, scratch, matchDest, matches.first(smallerMatchCount));
failures.append(m_jit.jump());
loOrAbove.link(&m_jit);
} else
failures.append(m_jit.branch32(MacroAssembler::LessThan, character, MacroAssembler::Imm32(static_cast<unsigned>(lo))));
// At this point we will have either matched, failed, or character is >= lo. Next, let's check if we're actually in the current range.
if (whichFirst != whichLast) {
CharacterBitSet mask;
for (auto range : ranges.subspan(whichFirst, whichLast - whichFirst + 1)) {
for (char32_t ch = range.begin; ch <= range.end; ++ch)
mask.set(ch - lo);
}
for (auto character : matches.subspan(smallerMatchCount, higherMatchStart - smallerMatchCount))
mask.set(character - lo);
matchCharacterClassByBitTest(character, scratch, matchDest, lo, hi, mask);
} else
matchDest.append(m_jit.branch32(MacroAssembler::LessThanOrEqual, character, MacroAssembler::Imm32(static_cast<unsigned>(hi))));
if (whichLast + 1 < ranges.size()) {
bool shouldGenerateFailureJump = true;
matchCharacterClassRange(character, scratch, failures, matchDest, ranges.subspan(whichLast + 1), matches.subspan(higherMatchStart), shouldGenerateFailureJump, false);
if (shouldGenerateFailureJump)
failures.append(m_jit.jump());
} else if (higherMatchStart < matches.size()) {
matchCharacterClassSet(character, scratch, matchDest, matches.subspan(higherMatchStart));
if (!isTopLevel)
failures.append(m_jit.jump());
}
}
void matchCharacterClassOnlyOneRange(const MacroAssembler::RegisterID character, const MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& failMatches, const CharacterRange& range)
{
// Instead of doing two branches, we rely on unsigned underflow - any values below ranges.begin
// will wrap around to the top of the 32-bit unsigned integer range, meaning all values outside
// the range will be strictly above (end - begin).
unsigned biasedEnd = range.end - range.begin;
m_jit.sub32(character, MacroAssembler::Imm32(static_cast<unsigned>(range.begin)), scratch);
failMatches.append(m_jit.branch32(MacroAssembler::Above, scratch, MacroAssembler::TrustedImm32(biasedEnd)));
}
void matchCharacterClassOnlyOneRange(const MacroAssembler::RegisterID character, const MacroAssembler::RegisterID scratch, MacroAssembler::JumpList& failMatches, const Vector<CharacterRange>& ranges)
{
ASSERT(ranges.size() == 1);
matchCharacterClassOnlyOneRange(character, scratch, failMatches, ranges[0]);
}
void matchCharacterClassTable(MacroAssembler::RegisterID character, MacroAssembler::JumpList& failMatches, const char* table, bool tableInverted = false)
{
ASSERT(!m_decodeSurrogatePairs);
MacroAssembler::ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(table));
failMatches.append(m_jit.branchTest8(tableInverted ? MacroAssembler::NonZero : MacroAssembler::Zero, tableEntry));
}
void matchCharacterClass(MacroAssembler::RegisterID character, MacroAssembler::RegisterID scratch, MatchTargets matchTargets, const CharacterClass* charClass)
{
if (charClass->m_table && !m_decodeSurrogatePairs) {
if (matchTargets.hasFailedTarget()) {
MacroAssembler::ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(charClass->m_table));
matchTargets.appendFailed(m_jit.branchTest8(charClass->m_tableInverted ? MacroAssembler::NonZero : MacroAssembler::Zero, tableEntry));
return;
}
MacroAssembler::ExtendedAddress tableEntry(character, reinterpret_cast<intptr_t>(charClass->m_table));
matchTargets.appendSucceeded(m_jit.branchTest8(charClass->m_tableInverted ? MacroAssembler::Zero : MacroAssembler::NonZero, tableEntry));
return;
}
Vector<char32_t, 32> unifiedMatches;
Vector<CharacterRange, 32> unifiedRanges;
unifiedMatches.appendVector(charClass->m_matches);
unifiedMatches.appendVector(charClass->m_matchesUnicode);
unifiedRanges.appendVector(charClass->m_ranges);
unifiedRanges.appendVector(charClass->m_rangesUnicode);
ASSERT(std::is_sorted(unifiedMatches.begin(), unifiedMatches.end(), [](auto& lhs, auto& rhs) {
return lhs < rhs;
}));
ASSERT(std::is_sorted(unifiedRanges.begin(), unifiedRanges.end(), [](auto& lhs, auto& rhs) {
return lhs.begin < rhs.begin;
}));
std::ranges::sort(unifiedMatches, [](auto& lhs, auto& rhs) {
return lhs < rhs;
});
std::ranges::sort(unifiedRanges, [](auto& lhs, auto& rhs) {
return lhs.begin < rhs.begin;
});
if (!unifiedRanges.size() && !unifiedMatches.size() && matchTargets.hasFailedTarget()) {
matchTargets.appendFailed(m_jit.jump());
return;
}
if (unifiedRanges.size()) {
MacroAssembler::JumpList failures;
bool shouldGenerateFailureJump = false;
matchCharacterClassRange(character, scratch, failures, matchTargets.matchSucceeded(), unifiedRanges.span(), unifiedMatches.span(), shouldGenerateFailureJump, true);
failures.link(&m_jit);
} else if (unifiedMatches.size())
matchCharacterClassSet(character, scratch, matchTargets.matchSucceeded(), unifiedMatches.span());
}
void matchCharacterClassTermInner(PatternTerm* term, MacroAssembler::JumpList& failures, const MacroAssembler::RegisterID character, const MacroAssembler::RegisterID scratch)
{
ASSERT(term->type == PatternTerm::Type::CharacterClass);
auto processCharacterClass = [&] (CharacterClass* characterClassToProcess) {
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs && term->invert())
failures.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::TrustedImm32(errorCodePoint)));
#endif
if (term->invert())
matchCharacterClass(character, scratch, failures, characterClassToProcess);
else if (characterClassToProcess->m_matches.isEmpty() && characterClassToProcess->m_matchesUnicode.isEmpty()
&& (characterClassToProcess->m_ranges.size() + characterClassToProcess->m_rangesUnicode.size()) == 1) {
matchCharacterClassOnlyOneRange(character, scratch, failures, characterClassToProcess->m_ranges.size() ? characterClassToProcess->m_ranges : characterClassToProcess->m_rangesUnicode);
} else {
MacroAssembler::JumpList matchDest;
// If we are matching the "any character" builtin class for non-unicode patterns,
// we only need to read the character and don't need to match as it will always succeed.
if (!characterClassToProcess->m_anyCharacter) {
matchCharacterClass(character, scratch, MatchTargets(matchDest, failures, MatchTargets::PreferredTarget::MatchSuccessFallThrough), characterClassToProcess);
if (!matchDest.empty())
failures.append(m_jit.jump());
}
matchDest.link(&m_jit);
}
};
if (m_charSize == CharSize::Char8) {
CharacterClass characterClass8Bit;
characterClass8Bit.copyOnly8BitCharacterData(*term->characterClass);
processCharacterClass(&characterClass8Bit);
} else
processCharacterClass(term->characterClass);
// Note that this falls through on a successful characterClass match.
}
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
void advanceIndexAfterCharacterClassTermMatch(const PatternTerm* term, MacroAssembler::JumpList& failuresAfterIncrementingIndex, const MacroAssembler::RegisterID character)
{
ASSERT(term->type == PatternTerm::Type::CharacterClass);
if (term->isFixedWidthCharacterClass() && !term->invert())
m_jit.add32(MacroAssembler::TrustedImm32(term->characterClass->hasNonBMPCharacters() ? 2 : 1), m_regs.index);
else {
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
MacroAssembler::Jump isBMPChar = m_jit.branch32(MacroAssembler::LessThan, character, MacroAssembler::TrustedImm32(0x10000));
failuresAfterIncrementingIndex.append(atEndOfInput());
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
isBMPChar.link(&m_jit);
}
}
#endif
// Jumps if input not available; will have (incorrectly) incremented already!
MacroAssembler::Jump jumpIfNoAvailableInput(unsigned countToCheck = 0)
{
if (countToCheck)
m_jit.add32(MacroAssembler::Imm32(countToCheck), m_regs.index);
return m_jit.branch32(MacroAssembler::Above, m_regs.index, m_regs.length);
}
MacroAssembler::Jump jumpIfAvailableInput(unsigned countToCheck)
{
m_jit.add32(MacroAssembler::Imm32(countToCheck), m_regs.index);
return m_jit.branch32(MacroAssembler::BelowOrEqual, m_regs.index, m_regs.length);
}
MacroAssembler::Jump checkNotEnoughInput(MacroAssembler::RegisterID additionalAmount)
{
m_jit.add32(m_regs.index, additionalAmount);
return m_jit.branch32(MacroAssembler::Above, additionalAmount, m_regs.length);
}
MacroAssembler::Jump checkInput()
{
return m_jit.branch32(MacroAssembler::BelowOrEqual, m_regs.index, m_regs.length);
}
MacroAssembler::Jump atEndOfInput()
{
return m_jit.branch32(MacroAssembler::Equal, m_regs.index, m_regs.length);
}
MacroAssembler::Jump notAtEndOfInput()
{
return m_jit.branch32(MacroAssembler::NotEqual, m_regs.index, m_regs.length);
}
MacroAssembler::BaseIndex negativeOffsetIndexedAddress(Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID tempReg)
{
return negativeOffsetIndexedAddress(negativeCharacterOffset, tempReg, m_regs.index);
}
MacroAssembler::BaseIndex negativeOffsetIndexedAddress(Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID tempReg, MacroAssembler::RegisterID indexReg)
{
MacroAssembler::RegisterID base = m_regs.input;
// MacroAssembler::BaseIndex() addressing can take a int32_t offset. Given that we can have a regular
// expression that has unsigned character offsets, MacroAssembler::BaseIndex's signed offset is insufficient
// for addressing in extreme cases where we might underflow. Therefore we check to see if
// negativeCharacterOffset will underflow directly or after converting for 16 bit characters.
// If so, we do our own address calculating by adjusting the base, using the result register
// as a temp address register.
unsigned maximumNegativeOffsetForCharacterSize = m_charSize == CharSize::Char8 ? 0x7fffffff : 0x3fffffff;
unsigned offsetAdjustAmount = 0x40000000;
if (negativeCharacterOffset > maximumNegativeOffsetForCharacterSize) {
base = tempReg;
m_jit.move(m_regs.input, base);
while (negativeCharacterOffset > maximumNegativeOffsetForCharacterSize) {
m_jit.subPtr(MacroAssembler::TrustedImm32(offsetAdjustAmount), base);
if (m_charSize != CharSize::Char8)
m_jit.subPtr(MacroAssembler::TrustedImm32(offsetAdjustAmount), base);
negativeCharacterOffset -= offsetAdjustAmount;
}
}
Checked<int32_t> characterOffset(-static_cast<int32_t>(negativeCharacterOffset));
if (m_charSize == CharSize::Char8)
return MacroAssembler::BaseIndex(m_regs.input, indexReg, MacroAssembler::TimesOne, characterOffset * static_cast<int32_t>(sizeof(char)));
return MacroAssembler::BaseIndex(m_regs.input, indexReg, MacroAssembler::TimesTwo, characterOffset * static_cast<int32_t>(sizeof(char16_t)));
}
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
void tryReadUnicodeChar(MacroAssembler::BaseIndex address, MacroAssembler::RegisterID resultReg)
{
ASSERT(m_charSize == CharSize::Char16);
m_jit.getEffectiveAddress(address, m_regs.regUnicodeInputAndTrail);
#if ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
if (m_useFirstNonBMPCharacterOptimization) {
tryReadUnicodeCharImpl<TryReadUnicodeCharGenFirstNonBMPOptimization::UseOptimization>(*m_vm, m_jit, resultReg);
return;
}
#endif
tryReadUnicodeCharImpl<TryReadUnicodeCharGenFirstNonBMPOptimization::DontUseOptimization>(*m_vm, m_jit, resultReg);
}
void tryReadNonBMPUnicodeChar(Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID resultReg, MacroAssembler::RegisterID indexReg)
{
ASSERT(m_charSize == CharSize::Char16);
MacroAssembler::BaseIndex address = negativeOffsetIndexedAddress(negativeCharacterOffset, resultReg, indexReg);
m_jit.getEffectiveAddress(address, m_regs.regUnicodeInputAndTrail);
tryReadUnicodeCharImpl<TryReadUnicodeCharGenFirstNonBMPOptimization::DontUseOptimization>(*m_vm, m_jit, resultReg);
}
#endif
void readCharacter(Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID resultReg)
{
readCharacter(negativeCharacterOffset, resultReg, m_regs.index);
}
void readCharacter(Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID resultReg, MacroAssembler::RegisterID indexReg)
{
MacroAssembler::BaseIndex address = negativeOffsetIndexedAddress(negativeCharacterOffset, resultReg, indexReg);
if (m_charSize == CharSize::Char8)
m_jit.load8(address, resultReg);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
else if (m_decodeSurrogatePairs)
tryReadUnicodeChar(address, resultReg);
#endif
else
m_jit.load16Unaligned(address, resultReg);
}
template<MacroAssembler::RelationalCondition cond>
MacroAssembler::Jump jumpIfCharCond(char32_t ch, Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID character, bool ignoreCase)
{
readCharacter(negativeCharacterOffset, character);
// For case-insesitive compares, non-ascii characters that have different
// upper & lower case representations are converted to a character class.
ASSERT(!ignoreCase || isASCIIAlpha(ch) || isCanonicallyUnique(ch, m_canonicalMode));
if (ignoreCase && isASCIIAlpha(ch)) {
m_jit.or32(MacroAssembler::TrustedImm32(0x20), character);
ch |= 0x20;
}
return m_jit.branch32(cond, character, MacroAssembler::Imm32(ch));
}
MacroAssembler::Jump jumpIfCharNotEquals(char32_t ch, Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID character, bool ignoreCase)
{
return jumpIfCharCond<MacroAssembler::NotEqual>(ch, negativeCharacterOffset, character, ignoreCase);
}
MacroAssembler::Jump jumpIfCharEquals(char32_t ch, Checked<unsigned> negativeCharacterOffset, MacroAssembler::RegisterID character, bool ignoreCase)
{
return jumpIfCharCond<MacroAssembler::Equal>(ch, negativeCharacterOffset, character, ignoreCase);
}
void storeToFrame(MacroAssembler::RegisterID reg, unsigned frameLocation)
{
m_jit.storePtr(reg, frameAddress().withOffset(frameLocation * sizeof(void*)));
}
void storeToFrame(MacroAssembler::TrustedImm32 imm, unsigned frameLocation)
{
m_jit.storePtr(imm, frameAddress().withOffset(frameLocation * sizeof(void*)));
}
#if CPU(ARM64) || CPU(X86_64) || CPU(RISCV64)
void storeToFrame(MacroAssembler::TrustedImmPtr imm, unsigned frameLocation)
{
m_jit.storePtr(imm, frameAddress().withOffset(frameLocation * sizeof(void*)));
}
#endif
MacroAssembler::DataLabelPtr storeToFrameWithPatch(unsigned frameLocation)
{
return m_jit.storePtrWithPatch(MacroAssembler::TrustedImmPtr(nullptr), frameAddress().withOffset(frameLocation * sizeof(void*)));
}
void loadFromFrame(unsigned frameLocation, MacroAssembler::RegisterID reg)
{
m_jit.loadPtr(frameAddress().withOffset(frameLocation * sizeof(void*)), reg);
}
void loadFromFrameAndJump(unsigned frameLocation)
{
m_jit.farJump(frameAddress().withOffset(frameLocation * sizeof(void*)), YarrBacktrackPtrTag);
}
CCallHelpers::Address frameAddress()
{
size_t stackSizeForCalleeSaves = WTF::roundUpToMultipleOf<stackAlignmentBytes()>(m_calleeSaves.registerCount() * sizeof(UCPURegister));
return CCallHelpers::Address(GPRInfo::callFrameRegister, -(stackSizeForCalleeSaves + m_callFrameSizeInBytes));
}
static unsigned alignCallFrameSizeInBytes(unsigned originalCallFrameSize)
{
unsigned callFrameSize = originalCallFrameSize;
if (!callFrameSize)
return 0;
callFrameSize *= sizeof(void*);
RELEASE_ASSERT(callFrameSize / sizeof(void*) == originalCallFrameSize);
return WTF::roundUpToMultipleOf<stackAlignmentBytes()>(callFrameSize);
}
void generateFailReturn()
{
m_jit.move(MacroAssembler::TrustedImmPtr((void*)WTF::notFound), m_regs.returnRegister);
m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);
#if ENABLE(YARR_JIT_REGEXP_TEST_INLINE)
if (m_compileMode == JITCompileMode::InlineTest) {
m_inlinedFailedMatch.append(m_jit.jump());
return;
}
#endif
generateReturn();
}
void generateJITFailReturn()
{
if (m_abortExecution.empty() && m_hitMatchLimit.empty())
return;
MacroAssembler::JumpList finishExiting;
if (!m_abortExecution.empty()) {
m_abortExecution.link(&m_jit);
m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), m_regs.returnRegister);
finishExiting.append(m_jit.jump());
}
if (!m_hitMatchLimit.empty()) {
m_hitMatchLimit.link(&m_jit);
m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::ErrorNoMatch)), m_regs.returnRegister);
}
finishExiting.link(&m_jit);
m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);
generateReturn();
}
// Used to record subpatterns, should only be called if m_compileMode is JITCompileMode::IncludeSubpatterns.
void setSubpatternStart(MacroAssembler::RegisterID reg, unsigned subpattern)
{
ASSERT(subpattern);
// FIXME: should be able to ASSERT(m_compileMode == JITCompileMode::IncludeSubpatterns), but then this function is conditionally NORETURN. :-(
m_jit.store32(reg, MacroAssembler::Address(m_regs.output, (subpattern << 1) * sizeof(int)));
}
void setSubpatternEnd(MacroAssembler::RegisterID reg, unsigned subpattern)
{
ASSERT(subpattern);
// FIXME: should be able to ASSERT(m_compileMode == JITCompileMode::IncludeSubpatterns), but then this function is conditionally NORETURN. :-(
m_jit.store32(reg, MacroAssembler::Address(m_regs.output, ((subpattern << 1) + 1) * sizeof(int)));
}
void clearSubpatternStart(unsigned subpattern)
{
ASSERT(subpattern);
// FIXME: should be able to ASSERT(m_compileMode == JITCompileMode::IncludeSubpatterns), but then this function is conditionally NORETURN. :-(
m_jit.store32(MacroAssembler::TrustedImm32(-1), MacroAssembler::Address(m_regs.output, (subpattern << 1) * sizeof(int)));
}
// We use one of three different strategies to track the start of the current match,
// while matching.
// 1) If the pattern has a fixed size, do nothing! - we calculate the value lazily
// at the end of matching. This is irrespective of m_compileMode, and in this case
// these methods should never be called.
// 2) If we're compiling JITCompileMode::IncludeSubpatterns, 'm_regs.output' contains a pointer to an output
// vector, store the match start in the output vector.
// 3) If we're compiling MatchOnly or InlinedTest, 'm_regs.output' is unused, store the match start directly
// in this register.
void setMatchStart(MacroAssembler::RegisterID reg)
{
ASSERT(!m_pattern.m_body->m_hasFixedSize);
if (m_compileMode == JITCompileMode::IncludeSubpatterns)
m_jit.store32(reg, MacroAssembler::Address(m_regs.output));
else
m_jit.move(reg, m_regs.output);
}
void getMatchStart(MacroAssembler::RegisterID reg)
{
ASSERT(!m_pattern.m_body->m_hasFixedSize);
if (m_compileMode == JITCompileMode::IncludeSubpatterns)
m_jit.load32(MacroAssembler::Address(m_regs.output), reg);
else
m_jit.move(m_regs.output, reg);
}
enum class YarrOpCode : uint8_t {
// These nodes wrap body alternatives - those in the main disjunction,
// rather than subpatterns or assertions. These are chained together in
// a doubly linked list, with a 'begin' node for the first alternative,
// a 'next' node for each subsequent alternative, and an 'end' node at
// the end. In the case of repeating alternatives, the 'end' node also
// has a reference back to 'begin'.
BodyAlternativeBegin,
BodyAlternativeNext,
BodyAlternativeEnd,
// Similar to the body alternatives, but used for subpatterns with two
// or more alternatives.
NestedAlternativeBegin,
NestedAlternativeNext,
NestedAlternativeEnd,
// Used for alternatives in subpatterns where there is only a single
// alternative (backtracking is easier in these cases), or for alternatives
// which never need to be backtracked (those in parenthetical assertions,
// terminal subpatterns).
SimpleNestedAlternativeBegin,
SimpleNestedAlternativeNext,
SimpleNestedAlternativeEnd,
// Used for alternatives in subpatterns where there is a list of BOL anchored
// string alternatives. Such a string list doesn't need backtracking. If the
// pattern is also EOL anchored, e.g. /^(?:cat|dog|doggy)$/, the list of strings
// needs to be sorted such that all longer strings with a prefix prior in the
// list appear first. In the example, we'd sort the alternatives to something
// like: /^(?:cat|doggy|dog)$/. This elimnates the need to backktrack.
StringListAlternativeBegin,
StringListAlternativeNext,
StringListAlternativeEnd,
// Used to wrap 'Once' subpattern matches (quantityMaxCount == 1).
ParenthesesSubpatternOnceBegin,
ParenthesesSubpatternOnceEnd,
// Used to wrap 'Terminal' subpattern matches (at the end of the regexp).
ParenthesesSubpatternTerminalBegin,
ParenthesesSubpatternTerminalEnd,
// Used to wrap generic captured matches
ParenthesesSubpatternBegin,
ParenthesesSubpatternEnd,
// Used to wrap parenthetical assertions.
ParentheticalAssertionBegin,
ParentheticalAssertionEnd,
// Wraps all simple terms (pattern characters, character classes).
Term,
// Where an expression contains only 'once through' body alternatives
// and no repeating ones, this op is used to return match failure.
MatchFailed
};
// This structure is used to hold the compiled opcode information,
// including reference back to the original PatternTerm/PatternAlternatives,
// and JIT compilation data structures.
struct YarrOp {
explicit YarrOp(PatternTerm* term)
: m_term(term)
, m_op(YarrOpCode::Term)
{
}
explicit YarrOp(YarrOpCode op)
: m_op(op)
{
}
// For alternatives, this holds the PatternAlternative and doubly linked
// references to this alternative's siblings. In the case of the
// YarrOpCode::BodyAlternativeEnd node at the end of a section of repeating nodes,
// m_nextOp will reference the YarrOpCode::BodyAlternativeBegin node of the first
// repeating alternative.
PatternAlternative* m_alternative;
size_t m_previousOp;
size_t m_nextOp;
// The operation, as a YarrOpCode, and also a reference to the PatternTerm.
PatternTerm* m_term;
YarrOpCode m_op;
// Used to record a set of Jumps out of the generated code, typically
// used for jumps out to backtracking code, and a single reentry back
// into the code for a node (likely where a backtrack will trigger
// rematching).
MacroAssembler::Label m_reentry;
MacroAssembler::JumpList m_jumps;
// Used for backtracking when the prior alternative did not consume any
// characters but matched.
MacroAssembler::Jump m_zeroLengthMatch;
// This flag is used to null out the subsequent pattern characters, when
// multiple are fused to match as a group.
bool m_isDeadCode { false };
// Currently used in the case of some of the more complex management of
// 'm_checkedOffset', to cache the offset used in this alternative, to avoid
// recalculating it.
Checked<unsigned> m_checkAdjust;
// This records the current input offset being applied due to the current
// set of alternatives we are nested within. E.g. when matching the
// character 'b' within the regular expression /abc/, we will know that
// the minimum size for the alternative is 3, checked upon entry to the
// alternative, and that 'b' is at offset 1 from the start, and as such
// when matching 'b' we need to apply an offset of -2 to the load.
Checked<unsigned> m_checkedOffset { };
// Used by YarrOpCode::NestedAlternativeNext/End to hold the pointer to the
// value that will be pushed into the pattern's frame to return to,
// upon backtracking back into the disjunction.
MacroAssembler::DataLabelPtr m_returnAddress;
BoyerMooreInfo* m_bmInfo { nullptr };
};
// BacktrackingState
// This class encapsulates information about the state of code generation
// whilst generating the code for backtracking, when a term fails to match.
// Upon entry to code generation of the backtracking code for a given node,
// the Backtracking state will hold references to all control flow sources
// that are outputs in need of further backtracking from the prior node
// generated (which is the subsequent operation in the regular expression,
// and in the m_ops Vector, since we generated backtracking backwards).
// These references to control flow take the form of:
// - A jump list of jumps, to be linked to code that will backtrack them
// further.
// - A set of DataLabelPtr values, to be populated with values to be
// treated effectively as return addresses backtracking into complex
// subpatterns.
// - A flag indicating that the current sequence of generated code up to
// this point requires backtracking.
class BacktrackingState {
private:
struct ReturnAddressRecord {
ReturnAddressRecord(MacroAssembler::DataLabelPtr dataLabel, MacroAssembler::Label backtrackLocation)
: m_dataLabel(dataLabel)
, m_backtrackLocation(backtrackLocation)
{
}
MacroAssembler::DataLabelPtr m_dataLabel;
MacroAssembler::Label m_backtrackLocation;
};
public:
typedef Vector<ReturnAddressRecord, 4> BacktrackRecords;
BacktrackingState()
: m_pendingFallthrough(false)
{
}
// Add a jump or jumps, a return address, or set the flag indicating
// that the current 'fallthrough' control flow requires backtracking.
void append(const MacroAssembler::Jump& jump)
{
m_laterFailures.append(jump);
}
void append(MacroAssembler::JumpList& jumpList)
{
m_laterFailures.append(jumpList);
}
void append(const MacroAssembler::DataLabelPtr& returnAddress)
{
m_pendingReturns.append(returnAddress);
}
void fallthrough()
{
ASSERT(!m_pendingFallthrough);
m_pendingFallthrough = true;
}
// These methods clear the backtracking state, either linking to the
// current location, a provided label, or copying the backtracking out
// to a JumpList. All actions may require code generation to take place,
// and as such are passed a pointer to the assembler.
void link(MacroAssembler* assembler)
{
if (m_pendingReturns.size()) {
MacroAssembler::Label here(assembler);
for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here));
m_pendingReturns.clear();
}
m_laterFailures.link(assembler);
m_laterFailures.clear();
m_pendingFallthrough = false;
}
void linkTo(MacroAssembler::Label label, MacroAssembler* assembler)
{
if (m_pendingReturns.size()) {
for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], label));
m_pendingReturns.clear();
}
if (m_pendingFallthrough)
assembler->jump(label);
m_laterFailures.linkTo(label, assembler);
m_laterFailures.clear();
m_pendingFallthrough = false;
}
void takeBacktracksToJumpList(MacroAssembler::JumpList& jumpList, MacroAssembler* assembler)
{
if (m_pendingReturns.size()) {
MacroAssembler::Label here(assembler);
for (unsigned i = 0; i < m_pendingReturns.size(); ++i)
m_backtrackRecords.append(ReturnAddressRecord(m_pendingReturns[i], here));
m_pendingReturns.clear();
m_pendingFallthrough = true;
}
if (m_pendingFallthrough)
jumpList.append(assembler->jump());
jumpList.append(m_laterFailures);
m_laterFailures.clear();
m_pendingFallthrough = false;
}
bool isEmpty()
{
return m_laterFailures.empty() && m_pendingReturns.isEmpty() && !m_pendingFallthrough;
}
BacktrackRecords& backtrackRecords()
{
return m_backtrackRecords;
}
static void linkBacktrackRecords(LinkBuffer& linkBuffer, const BacktrackRecords& backtrackRecords)
{
for (unsigned i = 0; i < backtrackRecords.size(); ++i)
linkBuffer.patch(backtrackRecords[i].m_dataLabel, linkBuffer.locationOf<YarrBacktrackPtrTag>(backtrackRecords[i].m_backtrackLocation));
}
// Called at the end of code generation to link all return addresses.
void linkDataLabels(LinkBuffer& linkBuffer)
{
ASSERT(isEmpty());
for (unsigned i = 0; i < m_backtrackRecords.size(); ++i)
linkBuffer.patch(m_backtrackRecords[i].m_dataLabel, linkBuffer.locationOf<YarrBacktrackPtrTag>(m_backtrackRecords[i].m_backtrackLocation));
}
private:
MacroAssembler::JumpList m_laterFailures;
bool m_pendingFallthrough;
Vector<MacroAssembler::DataLabelPtr, 4> m_pendingReturns;
Vector<ReturnAddressRecord, 4> m_backtrackRecords;
};
unsigned offsetForDuplicateNamedGroupId(unsigned duplicateNamedGroupId)
{
ASSERT(duplicateNamedGroupId);
return ((m_pattern.m_numSubpatterns + 1) << 1) + duplicateNamedGroupId - 1;
}
// Generation methods:
// ===================
// This method provides a default implementation of backtracking common
// to many terms; terms commonly jump out of the forwards matching path
// on any failed conditions, and add these jumps to the m_jumps list. If
// no special handling is required we can often just backtrack to m_jumps.
void backtrackTermDefault(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
m_backtrackingState.append(op.m_jumps);
}
void generateAssertionBOL(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
if (term->multiline()) {
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID scratch = m_regs.regT1;
MacroAssembler::JumpList matchDest;
if (!term->inputPosition)
matchDest.append(m_jit.branch32(MacroAssembler::Equal, m_regs.index, MacroAssembler::Imm32(op.m_checkedOffset)));
readCharacter(op.m_checkedOffset - term->inputPosition + 1, character);
matchCharacterClass(character, scratch, matchDest, m_pattern.newlineCharacterClass());
op.m_jumps.append(m_jit.jump());
matchDest.link(&m_jit);
} else {
// Erk, really should poison out these alternatives early. :-/
if (term->inputPosition)
op.m_jumps.append(m_jit.jump());
else
op.m_jumps.append(m_jit.branch32(MacroAssembler::NotEqual, m_regs.index, MacroAssembler::Imm32(op.m_checkedOffset)));
}
}
void backtrackAssertionBOL(size_t opIndex)
{
backtrackTermDefault(opIndex);
}
void generateAssertionEOL(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
if (term->multiline()) {
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID scratch = m_regs.regT1;
MacroAssembler::JumpList matchDest;
if (term->inputPosition == op.m_checkedOffset)
matchDest.append(atEndOfInput());
readCharacter(op.m_checkedOffset - term->inputPosition, character);
matchCharacterClass(character, scratch, matchDest, m_pattern.newlineCharacterClass());
op.m_jumps.append(m_jit.jump());
matchDest.link(&m_jit);
} else {
if (term->inputPosition == op.m_checkedOffset)
op.m_jumps.append(notAtEndOfInput());
// Erk, really should poison out these alternatives early. :-/
else
op.m_jumps.append(m_jit.jump());
}
}
void backtrackAssertionEOL(size_t opIndex)
{
backtrackTermDefault(opIndex);
}
// Also falls though on nextIsNotWordChar.
void matchAssertionWordchar(size_t opIndex, MacroAssembler::JumpList& nextIsWordChar, MacroAssembler::JumpList& nextIsNotWordChar)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID scratch = m_regs.regT1;
if (term->inputPosition == op.m_checkedOffset)
nextIsNotWordChar.append(atEndOfInput());
readCharacter(op.m_checkedOffset - term->inputPosition, character);
CharacterClass* wordcharCharacterClass;
if (m_pattern.eitherUnicode() && term->ignoreCase())
wordcharCharacterClass = m_pattern.wordUnicodeIgnoreCaseCharCharacterClass();
else
wordcharCharacterClass = m_pattern.wordcharCharacterClass();
matchCharacterClass(character, scratch, nextIsWordChar, wordcharCharacterClass);
}
void generateAssertionWordBoundary(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID scratch = m_regs.regT1;
MacroAssembler::Jump atBegin;
MacroAssembler::JumpList matchDest;
if (!term->inputPosition)
atBegin = m_jit.branch32(MacroAssembler::Equal, m_regs.index, MacroAssembler::Imm32(op.m_checkedOffset));
readCharacter(op.m_checkedOffset - term->inputPosition + 1, character);
CharacterClass* wordcharCharacterClass;
if (m_pattern.eitherUnicode() && term->ignoreCase())
wordcharCharacterClass = m_pattern.wordUnicodeIgnoreCaseCharCharacterClass();
else
wordcharCharacterClass = m_pattern.wordcharCharacterClass();
matchCharacterClass(character, scratch, matchDest, wordcharCharacterClass);
if (!term->inputPosition)
atBegin.link(&m_jit);
// We fall through to here if the last character was not a wordchar.
MacroAssembler::JumpList nonWordCharThenWordChar;
MacroAssembler::JumpList nonWordCharThenNonWordChar;
if (term->invert()) {
matchAssertionWordchar(opIndex, nonWordCharThenNonWordChar, nonWordCharThenWordChar);
nonWordCharThenWordChar.append(m_jit.jump());
} else {
matchAssertionWordchar(opIndex, nonWordCharThenWordChar, nonWordCharThenNonWordChar);
nonWordCharThenNonWordChar.append(m_jit.jump());
}
op.m_jumps.append(nonWordCharThenNonWordChar);
// We jump here if the last character was a wordchar.
matchDest.link(&m_jit);
MacroAssembler::JumpList wordCharThenWordChar;
MacroAssembler::JumpList wordCharThenNonWordChar;
if (term->invert()) {
matchAssertionWordchar(opIndex, wordCharThenNonWordChar, wordCharThenWordChar);
wordCharThenWordChar.append(m_jit.jump());
} else {
matchAssertionWordchar(opIndex, wordCharThenWordChar, wordCharThenNonWordChar);
// This can fall-though!
}
op.m_jumps.append(wordCharThenWordChar);
nonWordCharThenWordChar.link(&m_jit);
wordCharThenNonWordChar.link(&m_jit);
}
void backtrackAssertionWordBoundary(size_t opIndex)
{
backtrackTermDefault(opIndex);
}
#if ENABLE(YARR_JIT_BACKREFERENCES)
void matchBackreference(size_t opIndex, MacroAssembler::JumpList& characterMatchFails, MacroAssembler::RegisterID character, MacroAssembler::RegisterID patternIndex, MacroAssembler::RegisterID patternCharacter, MacroAssembler::RegisterID subpatternIdReg)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
unsigned subpatternId = term->backReferenceSubpatternId;
unsigned duplicateNamedGroupId = m_pattern.hasDuplicateNamedCaptureGroups() ? m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId] : 0;
MacroAssembler::Label loop(&m_jit);
#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
if (!m_decodeSurrogatePairs)
readCharacter(0, patternCharacter, patternIndex);
else {
// For reading Unicode characters, use the standard resultReg so we can call the standard tryReadUnicodeChar()
// helper instead of emitting an inlined version.
readCharacter(op.m_checkedOffset - term->inputPosition, character, patternIndex);
m_jit.move(character, patternCharacter);
}
#else
readCharacter(0, patternCharacter, patternIndex);
#endif
readCharacter(op.m_checkedOffset - term->inputPosition, character);
if (!term->ignoreCase()) {
characterMatchFails.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::TrustedImm32(errorCodePoint)));
characterMatchFails.append(m_jit.branch32(MacroAssembler::NotEqual, character, patternCharacter));
} else if (m_charSize == CharSize::Char8) {
MacroAssembler::Jump charactersMatch = m_jit.branch32(MacroAssembler::Equal, character, patternCharacter);
MacroAssembler::ExtendedAddress characterTableEntry(character, reinterpret_cast<intptr_t>(&latin1CanonicalizationTable));
m_jit.load16(characterTableEntry, character);
MacroAssembler::ExtendedAddress patternTableEntry(patternCharacter, reinterpret_cast<intptr_t>(&latin1CanonicalizationTable));
m_jit.load16(patternTableEntry, patternCharacter);
characterMatchFails.append(m_jit.branch32(MacroAssembler::NotEqual, character, patternCharacter));
charactersMatch.link(&m_jit);
}
#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
else {
// 16 Bit ignore case matching.
RELEASE_ASSERT(character == areCanonicallyEquivalentCharArgReg);
RELEASE_ASSERT(patternCharacter == areCanonicallyEquivalentPattCharArgReg);
RELEASE_ASSERT(m_regs.regUnicodeInputAndTrail == areCanonicallyEquivalentCanonicalModeArgReg);
ASSERT(m_decode16BitForBackreferencesWithCalls);
// Fail matching for dangling surrogates.
characterMatchFails.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::TrustedImm32(errorCodePoint)));
characterMatchFails.append(m_jit.branch32(MacroAssembler::Equal, patternCharacter, MacroAssembler::TrustedImm32(errorCodePoint)));
MacroAssembler::JumpList charactersMatch;
charactersMatch.append(m_jit.branch32(MacroAssembler::Equal, character, patternCharacter));
MacroAssembler::Jump notASCII = m_jit.branch32(MacroAssembler::GreaterThan, character, MacroAssembler::TrustedImm32(127));
// The ASCII part of latin1CanonicalizationTable works for UCS2 and Unicode patterns.
MacroAssembler::ExtendedAddress characterTableEntry(character, reinterpret_cast<intptr_t>(&latin1CanonicalizationTable));
m_jit.load16(characterTableEntry, character);
MacroAssembler::ExtendedAddress patternTableEntry(patternCharacter, reinterpret_cast<intptr_t>(&latin1CanonicalizationTable));
m_jit.load16(patternTableEntry, patternCharacter);
characterMatchFails.append(m_jit.branch32(MacroAssembler::NotEqual, character, patternCharacter));
charactersMatch.append(m_jit.jump());
notASCII.link(&m_jit);
// We are safe to use the regUnicodeInputAndTrail register as an argument since it
// is only used when reading unicode characters.
int32_t canonicalMode = static_cast<int32_t>(m_decodeSurrogatePairs ? CanonicalMode::Unicode : CanonicalMode::UCS2);
m_jit.move(MacroAssembler::TrustedImm32(canonicalMode), areCanonicallyEquivalentCanonicalModeArgReg);
m_jit.nearCallThunk(CodeLocationLabel { m_vm->getCTIStub(areCanonicallyEquivalentThunkGenerator).retaggedCode<NoPtrTag>() });
// Match return as a bool in character reg.
characterMatchFails.append(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::Imm32(0)));
// Add code to compare non-ASCII Unicode codepoints.
charactersMatch.link(&m_jit);
}
#endif
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
m_jit.add32(MacroAssembler::TrustedImm32(1), patternIndex);
if (m_decodeSurrogatePairs) {
auto isBMPChar = m_jit.branch32(MacroAssembler::LessThan, patternCharacter, MacroAssembler::TrustedImm32(0x10000));
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
m_jit.add32(MacroAssembler::TrustedImm32(1), patternIndex);
isBMPChar.link(&m_jit);
}
if (!!duplicateNamedGroupId) {
MacroAssembler::RegisterID endIndex = character; // We can reuse the character register here as we already matched.
if (subpatternIdReg == InvalidGPRReg) {
subpatternIdReg = m_regs.unicodeAndSubpatternIdTemp;
m_jit.load32(MacroAssembler::Address(m_regs.output, offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(unsigned)), subpatternIdReg);
}
loadSubPatternEnd(m_regs.output, subpatternIdReg, endIndex);
m_jit.branch32(MacroAssembler::NotEqual, patternIndex, endIndex).linkTo(loop, &m_jit);
} else
m_jit.branch32(MacroAssembler::NotEqual, patternIndex, MacroAssembler::Address(m_regs.output, ((subpatternId << 1) + 1) * sizeof(int))).linkTo(loop, &m_jit);
}
void generateBackReference(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
#if !ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
if (term->ignoreCase() && m_charSize != CharSize::Char8) {
m_failureReason = JITFailureReason::BackReference;
return;
}
#endif
unsigned subpatternId = term->backReferenceSubpatternId;
unsigned duplicateNamedGroupId = m_pattern.hasDuplicateNamedCaptureGroups() ? m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId] : 0;
unsigned parenthesesFrameLocation = term->frameLocation;
const MacroAssembler::RegisterID characterOrTemp = m_regs.regT0;
const MacroAssembler::RegisterID patternTemp = m_regs.regT1;
const MacroAssembler::RegisterID patternIndex = m_regs.regT2;
m_usesT2 = true;
MacroAssembler::RegisterID subpatternIdReg = InvalidGPRReg;
storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex());
if (term->quantityType != QuantifierType::FixedCount || term->quantityMaxCount != 1)
storeToFrame(MacroAssembler::TrustedImm32(0), parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
MacroAssembler::JumpList matches;
if (term->quantityType != QuantifierType::NonGreedy) {
MacroAssembler::JumpList zeroLengthMatches;
if (duplicateNamedGroupId) {
if (!m_decodeSurrogatePairs)
subpatternIdReg = m_regs.unicodeAndSubpatternIdTemp;
else
subpatternIdReg = patternTemp;
loadSubPatternIdForDuplicateNamedGroup(m_regs.output, duplicateNamedGroupId, subpatternIdReg);
MacroAssembler::Jump emptySubpattern = m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(0), subpatternIdReg);
if (term->quantityType != QuantifierType::FixedCount || term->quantityMaxCount != 1) {
// This is an empty match, which is successful.
matches.append(emptySubpattern);
} else
zeroLengthMatches.append(emptySubpattern);
loadSubPattern(m_regs.output, subpatternIdReg, patternIndex, patternTemp);
} else
loadSubPattern(m_regs.output, subpatternId, patternIndex, patternTemp);
// An empty match is successful without consuming characters
if (term->quantityType != QuantifierType::FixedCount || term->quantityMaxCount != 1) {
matches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(-1), patternIndex));
matches.append(m_jit.branch32(MacroAssembler::Equal, patternIndex, patternTemp));
} else {
zeroLengthMatches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(-1), patternIndex));
MacroAssembler::Jump tryNonZeroMatch = m_jit.branch32(MacroAssembler::NotEqual, patternIndex, patternTemp);
zeroLengthMatches.link(&m_jit);
storeToFrame(MacroAssembler::TrustedImm32(1), parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
if (term->quantityType == QuantifierType::Greedy)
storeToFrame(MacroAssembler::TrustedImm32(0), parenthesesFrameLocation + BackTrackInfoBackReference::backReferenceSizeIndex());
matches.append(m_jit.jump());
tryNonZeroMatch.link(&m_jit);
}
}
switch (term->quantityType) {
case QuantifierType::FixedCount: {
MacroAssembler::Label outerLoop(&m_jit);
// PatternTemp should contain pattern end index at this point. Compute pattern size.
m_jit.sub32(patternIndex, patternTemp);
op.m_jumps.append(checkNotEnoughInput(patternTemp));
matchBackreference(opIndex, op.m_jumps, characterOrTemp, patternIndex, patternTemp, subpatternIdReg == m_regs.unicodeAndSubpatternIdTemp ? subpatternIdReg : InvalidGPRReg);
if (term->quantityMaxCount != 1) {
loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex(), characterOrTemp);
m_jit.add32(MacroAssembler::TrustedImm32(1), characterOrTemp);
storeToFrame(characterOrTemp, parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
matches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::Imm32(term->quantityMaxCount), characterOrTemp));
if (duplicateNamedGroupId) {
if (m_decodeSurrogatePairs)
loadSubPatternIdForDuplicateNamedGroup(m_regs.output, duplicateNamedGroupId, subpatternIdReg);
// At this point, we have already checked that subpatternIdReg has a valid subpatternId.
loadSubPattern(m_regs.output, subpatternIdReg, patternIndex, patternTemp);
} else
loadSubPattern(m_regs.output, subpatternId, patternIndex, patternTemp);
m_jit.jump(outerLoop);
}
matches.link(&m_jit);
storeToFrame(MacroAssembler::TrustedImm32(1), parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
break;
}
case QuantifierType::Greedy: {
MacroAssembler::JumpList incompleteMatches;
MacroAssembler::Label outerLoop(&m_jit);
// PatternTemp should contain pattern end index at this point. Compute pattern size.
m_jit.sub32(patternIndex, patternTemp);
storeToFrame(patternTemp, parenthesesFrameLocation + BackTrackInfoBackReference::backReferenceSizeIndex());
matches.append(checkNotEnoughInput(patternTemp));
matchBackreference(opIndex, incompleteMatches, characterOrTemp, patternIndex, patternTemp, subpatternIdReg == m_regs.unicodeAndSubpatternIdTemp ? subpatternIdReg : InvalidGPRReg);
loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex(), characterOrTemp);
m_jit.add32(MacroAssembler::TrustedImm32(1), characterOrTemp);
storeToFrame(characterOrTemp, parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
if (term->quantityMaxCount != quantifyInfinite)
matches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::Imm32(term->quantityMaxCount), characterOrTemp));
if (duplicateNamedGroupId) {
if (m_decodeSurrogatePairs)
loadSubPatternIdForDuplicateNamedGroup(m_regs.output, duplicateNamedGroupId, subpatternIdReg);
// At this point, we have already checked that subpatternIdReg has a valid subpatternId.
loadSubPattern(m_regs.output, subpatternIdReg, patternIndex, patternTemp);
} else
loadSubPattern(m_regs.output, subpatternId, patternIndex, patternTemp);
// Store current index in frame for restoring after a partial match
storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex());
m_jit.jump(outerLoop);
incompleteMatches.link(&m_jit);
loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex(), m_regs.index);
matches.link(&m_jit);
op.m_reentry = m_jit.label();
break;
}
case QuantifierType::NonGreedy: {
MacroAssembler::JumpList incompleteMatches;
MacroAssembler::JumpList zeroLengthMatches;
matches.append(m_jit.jump());
op.m_reentry = m_jit.label();
if (duplicateNamedGroupId) {
if (!m_decodeSurrogatePairs)
subpatternIdReg = m_regs.unicodeAndSubpatternIdTemp;
else
subpatternIdReg = patternTemp;
loadSubPatternIdForDuplicateNamedGroup(m_regs.output, duplicateNamedGroupId, subpatternIdReg);
zeroLengthMatches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(0), subpatternIdReg));
loadSubPattern(m_regs.output, subpatternIdReg, patternIndex, patternTemp);
} else
loadSubPattern(m_regs.output, subpatternId, patternIndex, patternTemp);
// An empty match is successful without consuming characters
zeroLengthMatches.append(m_jit.branch32(MacroAssembler::Equal, MacroAssembler::TrustedImm32(-1), patternIndex));
MacroAssembler::Jump tryNonZeroMatch = m_jit.branch32(MacroAssembler::NotEqual, patternIndex, patternTemp);
zeroLengthMatches.link(&m_jit);
storeToFrame(MacroAssembler::TrustedImm32(1), parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
matches.append(m_jit.jump());
tryNonZeroMatch.link(&m_jit);
// Check if we have input remaining to match
m_jit.sub32(patternIndex, patternTemp);
matches.append(checkNotEnoughInput(patternTemp));
storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex());
matchBackreference(opIndex, incompleteMatches, characterOrTemp, patternIndex, patternTemp, subpatternIdReg == m_regs.unicodeAndSubpatternIdTemp ? subpatternIdReg : InvalidGPRReg);
matches.append(m_jit.jump());
incompleteMatches.link(&m_jit);
loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex(), m_regs.index);
matches.link(&m_jit);
break;
}
}
}
void backtrackBackReference(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
m_backtrackingState.link(&m_jit);
op.m_jumps.link(&m_jit);
MacroAssembler::JumpList failures;
unsigned parenthesesFrameLocation = term->frameLocation;
switch (term->quantityType) {
case QuantifierType::FixedCount:
loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::beginIndex(), m_regs.index);
break;
case QuantifierType::Greedy: {
const MacroAssembler::RegisterID matchAmount = m_regs.regT0;
const MacroAssembler::RegisterID matchSize = m_regs.regT1;
loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex(), matchAmount);
failures.append(m_jit.branchTest32(MacroAssembler::Zero, matchAmount));
loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::backReferenceSizeIndex(), matchSize);
m_jit.sub32(matchSize, m_regs.index);
m_jit.sub32(MacroAssembler::TrustedImm32(1), matchAmount);
storeToFrame(matchAmount, parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
m_jit.jump(op.m_reentry);
break;
}
case QuantifierType::NonGreedy: {
const MacroAssembler::RegisterID matchAmount = m_regs.regT0;
failures.append(atEndOfInput());
loadFromFrame(parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex(), matchAmount);
if (term->quantityMaxCount != quantifyInfinite)
failures.append(m_jit.branch32(MacroAssembler::AboveOrEqual, MacroAssembler::Imm32(term->quantityMaxCount), matchAmount));
m_jit.add32(MacroAssembler::TrustedImm32(1), matchAmount);
storeToFrame(matchAmount, parenthesesFrameLocation + BackTrackInfoBackReference::matchAmountIndex());
m_jit.jump(op.m_reentry);
break;
}
}
failures.link(&m_jit);
m_backtrackingState.fallthrough();
}
#endif
void generatePatternCharacterOnce(size_t opIndex, MatchTargets& matchTargets)
{
YarrOp& op = m_ops[opIndex];
if (op.m_isDeadCode)
return;
MatchTargets defaultMatchTargets(matchTargets.hasFailedTarget() ? matchTargets.matchFailed() : op.m_jumps, MatchTargets::PreferredTarget::MatchSuccessFallThrough);
MatchTargets lastMatchTargets(matchTargets.matchSucceeded(), matchTargets.hasFailedTarget() ? matchTargets.matchFailed() : op.m_jumps, matchTargets.preferredTarget());
// m_ops always ends with a YarrOpCode::BodyAlternativeEnd or YarrOpCode::MatchFailed
// node, so there must always be at least one more node.
ASSERT(opIndex + 1 < m_ops.size());
const MacroAssembler::RegisterID character = m_regs.regT0;
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
unsigned maxCharactersAtOnce = m_charSize == CharSize::Char8 ? 8 : 4;
#else
unsigned maxCharactersAtOnce = m_charSize == CharSize::Char8 ? 4 : 2;
#endif
uint64_t charMask = m_charSize == CharSize::Char8 ? 0xff : 0xffff;
Vector<YarrOp*, 16> opList;
unsigned firstPosition = op.m_term->inputPosition;
unsigned lastPosition = firstPosition;
auto firstChar = op.m_term->patternCharacter;
bool have16BitCharacter = !isLatin1(firstChar);
// For case-insesitive compares, non-ascii characters that have different
// upper & lower case representations are converted to a character class.
ASSERT(!op.m_term->ignoreCase() || isASCIIAlpha(firstChar) || isCanonicallyUnique(firstChar, m_canonicalMode));
if (m_decodeSurrogatePairs && (!U_IS_BMP(firstChar) || U16_IS_SURROGATE(firstChar))) {
// The first term we are considering is a non-BMP or dangling surrogate char in unicode pattern. Just try matching it and be done.
uint64_t charToMatch = firstChar;
auto offset = op.m_checkedOffset - op.m_term->inputPosition;
if (!matchTargets.hasSucceedTarget() || m_ops[opIndex + 1].m_op == YarrOpCode::Term)
defaultMatchTargets.appendFailed(jumpIfCharNotEquals(charToMatch, offset, character, op.m_term->ignoreCase()));
else
matchTargets.appendSucceeded(jumpIfCharEquals(charToMatch, offset, character, op.m_term->ignoreCase()));
return;
}
opList.append(&m_ops[opIndex]);
for (size_t i = opIndex + 1; i < m_ops.size(); ++i) {
YarrOp* currOp = &m_ops[i];
if (currOp->m_op != YarrOpCode::Term)
break;
PatternTerm* currTerm = currOp->m_term;
// YarrJIT handles decoded surrogate pair as one character if unicode flag is enabled.
// Note that the numberCharacters become 1 while the width of the pattern character becomes 32bit in this case.
if (currTerm->quantityType != QuantifierType::FixedCount
|| currTerm->quantityMaxCount != 1
|| (currTerm->type != PatternTerm::Type::PatternCharacter
&& currTerm->type != PatternTerm::Type::CharacterClass)
|| (m_decodeSurrogatePairs
&& ((currTerm->type == PatternTerm::Type::PatternCharacter && (!U_IS_BMP(currTerm->patternCharacter) || U16_IS_SURROGATE(currTerm->patternCharacter)))
|| (currTerm->type == PatternTerm::Type::CharacterClass && (currTerm->characterClass->hasNonBMPCharacters()
|| currTerm->invert())))))
break;
unsigned currPosition = currTerm->inputPosition;
constexpr unsigned maxGroupingDistance = 16;
if (currPosition > lastPosition) {
// If the next term is too far away, we'll handle it by itself
if (currPosition > lastPosition + maxGroupingDistance)
break;
if (currPosition > lastPosition + 1)
opList.insertFill(lastPosition - firstPosition + 1, nullptr, currPosition - lastPosition - 1);
opList.append(currOp);
lastPosition = currPosition;
} else if (currPosition < firstPosition) {
// If the next term is too far away, we'll handle it by itself
if (currPosition < firstPosition - maxGroupingDistance)
break;
opList.insertFill(0, nullptr, firstPosition - currPosition);
opList.first() = currOp;
firstPosition = currPosition;
} else {
ASSERT(opList[currPosition - firstPosition] == nullptr);
opList[currPosition - firstPosition] = currOp;
}
}
// Prune list after first hole and check for 16 bit characters. Also mark "dead" terms that will be checked as part of this term's processing.
bool foundFirstCharTerm = opList[0]->m_term->type == PatternTerm::Type::PatternCharacter;
size_t firstCharTermIndex = 0;
for (size_t i = 1; i < opList.size(); ++i) {
YarrOp* currOp = opList[i];
if (!currOp) {
// If we have characters, break out
if (foundFirstCharTerm) {
opList.shrink(i);
break;
}
// Otherwise, we're still in the non-character prefix
continue;
}
if (currOp->m_term->type == PatternTerm::Type::PatternCharacter) {
// For case-insesitive compares, non-ascii characters that have different
// upper & lower case representations are converted to a character class.
ASSERT(!currOp->m_term->ignoreCase() || isASCIIAlpha(currOp->m_term->patternCharacter) || isCanonicallyUnique(currOp->m_term->patternCharacter, m_canonicalMode));
if (foundFirstCharTerm)
currOp->m_isDeadCode = true;
else {
foundFirstCharTerm = true;
firstCharTermIndex = i;
}
have16BitCharacter |= !isLatin1(currOp->m_term->patternCharacter);
}
}
// We definitely should have a PatternCharacter, otherwise we shouldn't have gotten here
// This assertion also checks that firstCharTermIndex is correct
ASSERT(foundFirstCharTerm);
if (firstCharTermIndex)
opList.removeAt(0, firstCharTermIndex);
if (have16BitCharacter && (m_charSize == CharSize::Char8)) {
// Have a 16 bit pattern character and an 8 bit string - short circuit
defaultMatchTargets.appendFailed(m_jit.jump());
return;
}
// Remove all trailing character class terms.
while (!opList.isEmpty() && opList.last()->m_term->type == PatternTerm::Type::CharacterClass)
opList.removeLast();
RELEASE_ASSERT(!opList.isEmpty());
auto checkedOffset = opList[0]->m_checkedOffset;
unsigned startPosition = opList[0]->m_term->inputPosition;
unsigned numCharsToCheck { 0 };
unsigned charsCheckedLastIter { 0 };
for (size_t opListIdx = 0; opListIdx < opList.size(); opListIdx += numCharsToCheck, startPosition += numCharsToCheck, charsCheckedLastIter = numCharsToCheck) {
// Skip past leading non-Character terms.
for (; opListIdx < opList.size(); ++opListIdx, ++startPosition) {
YarrOp* currOp = opList[opListIdx];
ASSERT(currOp);
if (currOp->m_term->type == PatternTerm::Type::PatternCharacter)
break;
}
if (opListIdx == opList.size()) {
// The remaining term(s) are all character classes. Our work here is done.
return;
}
unsigned numCharsRemaining = opList.size() - opListIdx;
unsigned negativeOffset = 0;
numCharsToCheck = std::min(numCharsRemaining, maxCharactersAtOnce);
// We want to do the minimul number of load, compare and branch blocks.
// This means that we want to do overlapping loads and masking if that is profitable.
// For example, if we have 7 adjacent characters, we want to do two load32, compare and branch
// groups with the second group offset by 1 byte. If that group of 7 adjacent characters
// occurs after a group of 8, we want to do one load64, compare and branch offset by one byte.
// The goal is to do as many larger loads first, followed by one smaller one.
// After this adjustment, numCharsToCheck should be 1, 2, 4 or 8.
switch (numCharsToCheck) {
case 3:
if (charsCheckedLastIter >= 4) {
numCharsToCheck = 4;
negativeOffset = 1;
} else
numCharsToCheck = 2;
break;
case 5:
if (charsCheckedLastIter == 8) {
numCharsToCheck = 8;
negativeOffset = 3;
} else
numCharsToCheck = 4;
break;
case 6:
if (charsCheckedLastIter == 8) {
numCharsToCheck = 8;
negativeOffset = 2;
} else
numCharsToCheck = 4;
break;
case 7:
if (charsCheckedLastIter == 8) {
numCharsToCheck = 8;
negativeOffset = 1;
} else if (charsCheckedLastIter == 4) {
numCharsToCheck = 4;
negativeOffset = 1;
} else
numCharsToCheck = 4;
break;
default:
break;
}
if (negativeOffset) {
opListIdx -= negativeOffset;
startPosition -= negativeOffset;
}
ASSERT(numCharsToCheck == 1 || numCharsToCheck == 2 || numCharsToCheck == 4 || numCharsToCheck == 8);
auto calcShiftAmount = [&] (unsigned positionInLoad) {
return (m_charSize == CharSize::Char8 ? 8 : 16) * positionInLoad;
};
char32_t currentCharacter { 0 };
uint64_t allCharacters { 0 };
uint64_t caseMask { 0 };
uint64_t ignoredCharsMask { 0 };
unsigned positionInLoad = 0;
unsigned firstCharInLoad = opListIdx + negativeOffset;
unsigned lastCharInLoad { 0 };
for (unsigned i = 0; i < negativeOffset; ++i, ++positionInLoad)
ignoredCharsMask |= charMask << calcShiftAmount(positionInLoad);
for (auto i = opListIdx + negativeOffset; i < opListIdx + numCharsToCheck; ++i, ++positionInLoad) {
YarrOp* currOp = opList[i];
ASSERT(currOp);
PatternTerm* currTerm = currOp->m_term;
unsigned shiftAmount = calcShiftAmount(positionInLoad);
if (currTerm->type == PatternTerm::Type::PatternCharacter) {
currentCharacter = currTerm->patternCharacter;
lastCharInLoad = i;
allCharacters |= (static_cast<uint64_t>(currentCharacter) << shiftAmount);
if (currTerm->ignoreCase() && isASCIIAlpha(currentCharacter))
caseMask |= 32ULL << shiftAmount;
} else if (currTerm->type == PatternTerm::Type::CharacterClass)
ignoredCharsMask |= charMask << shiftAmount;
}
auto numRealCharsToCheck = roundUpToPowerOfTwo(lastCharInLoad - firstCharInLoad + 1);
#if ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
if (m_useFirstNonBMPCharacterOptimization && numRealCharsToCheck > 1) {
// We are going to try matching more than one character at a time,
// so we should only advance one character at a time as normal.
m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.firstCharacterAdditionalReadSize);
}
#endif
MatchTargets* matchTargetForFinalComparison = (opListIdx + numCharsToCheck >= opList.size()) ? &lastMatchTargets : &defaultMatchTargets;
if (m_charSize == CharSize::Char8) {
auto check1 = [&] (Checked<unsigned> offset, char32_t characters, uint16_t caseMask, MatchTargets& matchTargets) {
readCharacter(offset, character);
if (caseMask)
m_jit.or32(MacroAssembler::Imm32(caseMask), character);
if (!matchTargets.hasSucceedTarget())
defaultMatchTargets.appendFailed(m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(characters | caseMask)));
else
matchTargets.appendSucceeded(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::Imm32(characters | caseMask)));
};
auto check2 = [&] (Checked<unsigned> offset, uint16_t characters, uint16_t caseMask, MatchTargets& matchTargets) {
m_jit.load16Unaligned(negativeOffsetIndexedAddress(offset, character), character);
if (caseMask)
m_jit.or32(MacroAssembler::Imm32(caseMask), character);
if (!matchTargets.hasSucceedTarget())
defaultMatchTargets.appendFailed(m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(characters | caseMask)));
else
matchTargets.appendSucceeded(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::Imm32(characters | caseMask)));
};
auto check4 = [&] (Checked<unsigned> offset, unsigned characters, unsigned caseMask, uint64_t ignoredCharsMask, MatchTargets& matchTargets) {
m_jit.load32WithUnalignedHalfWords(negativeOffsetIndexedAddress(offset, character), character);
if (ignoredCharsMask)
m_jit.and32(MacroAssembler::Imm32(~ignoredCharsMask), character);
if (caseMask)
m_jit.or32(MacroAssembler::Imm32(caseMask), character);
if (!matchTargets.hasSucceedTarget())
defaultMatchTargets.appendFailed(m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(characters | caseMask)));
else
matchTargets.appendSucceeded(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::Imm32(characters | caseMask)));
};
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
auto check8 = [&] (Checked<unsigned> offset, uint64_t characters, uint64_t caseMask, uint64_t ignoredCharsMask, MatchTargets& matchTargets) {
m_jit.load64(negativeOffsetIndexedAddress(offset, character), character);
if (ignoredCharsMask)
m_jit.and64(MacroAssembler::TrustedImm64(~ignoredCharsMask), character);
if (caseMask)
m_jit.or64(MacroAssembler::TrustedImm64(caseMask), character);
if (!matchTargets.hasSucceedTarget())
defaultMatchTargets.appendFailed(m_jit.branch64(MacroAssembler::NotEqual, character, MacroAssembler::TrustedImm64(characters | caseMask)));
else
matchTargets.appendSucceeded(m_jit.branch64(MacroAssembler::Equal, character, MacroAssembler::TrustedImm64(characters | caseMask)));
};
#endif
switch (numRealCharsToCheck) {
case 1:
ASSERT(~ignoredCharsMask);
check1(checkedOffset - startPosition, allCharacters & 0xff, caseMask & 0xff, *matchTargetForFinalComparison);
break;
case 2: {
ASSERT(~ignoredCharsMask);
check2(checkedOffset - startPosition, allCharacters & 0xffff, caseMask & 0xffff, *matchTargetForFinalComparison);
break;
}
case 4: {
check4(checkedOffset - startPosition, allCharacters & 0xffffffff, caseMask & 0xffffffff, ignoredCharsMask, *matchTargetForFinalComparison);
break;
}
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
case 8: {
check8(checkedOffset - startPosition, allCharacters, caseMask, ignoredCharsMask, *matchTargetForFinalComparison);
break;
}
#endif
default:
ASSERT_NOT_REACHED();
break;
}
} else {
// m_charSize == CharSize::Char16
auto check1 = [&] (Checked<unsigned> offset, char32_t characters, uint16_t caseMask, MatchTargets& matchTargets) {
if (!matchTargets.hasSucceedTarget())
defaultMatchTargets.appendFailed(jumpIfCharNotEquals(characters, offset, character, caseMask));
else
matchTargets.appendSucceeded(jumpIfCharEquals(characters, offset, character, caseMask));
};
auto check2 = [&] (Checked<unsigned> offset, unsigned characters, unsigned caseMask, MatchTargets& matchTargets) {
m_jit.load32WithUnalignedHalfWords(negativeOffsetIndexedAddress(offset, character), character);
if (caseMask)
m_jit.or32(MacroAssembler::Imm32(caseMask), character);
if (!matchTargets.hasSucceedTarget())
defaultMatchTargets.appendFailed(m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(characters | caseMask)));
else
matchTargets.appendSucceeded(m_jit.branch32(MacroAssembler::Equal, character, MacroAssembler::Imm32(characters | caseMask)));
};
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
auto check4 = [&] (Checked<unsigned> offset, uint64_t characters, uint64_t caseMask, uint64_t ignoredCharsMask, MatchTargets& matchTargets) {
m_jit.load64(negativeOffsetIndexedAddress(offset, character), character);
if (ignoredCharsMask)
m_jit.and64(MacroAssembler::TrustedImm64(~ignoredCharsMask), character);
if (caseMask)
m_jit.or64(MacroAssembler::TrustedImm64(caseMask), character);
if (!matchTargets.hasSucceedTarget())
defaultMatchTargets.appendFailed(m_jit.branch64(MacroAssembler::NotEqual, character, MacroAssembler::TrustedImm64(characters | caseMask)));
else
matchTargets.appendSucceeded(m_jit.branch64(MacroAssembler::Equal, character, MacroAssembler::TrustedImm64(characters | caseMask)));
};
#endif
switch (numRealCharsToCheck) {
case 1:
ASSERT(~ignoredCharsMask);
check1(checkedOffset - startPosition, allCharacters & 0xffffffff, caseMask & 0xffffffff, *matchTargetForFinalComparison);
break;
case 2: {
ASSERT(~ignoredCharsMask);
check2(checkedOffset - startPosition, allCharacters & 0xffffffff, caseMask & 0xffffffff, *matchTargetForFinalComparison);
break;
}
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
case 4: {
check4(checkedOffset - startPosition, allCharacters, caseMask, ignoredCharsMask, *matchTargetForFinalComparison);
break;
}
#endif
default:
ASSERT_NOT_REACHED();
break;
}
}
}
}
void backtrackPatternCharacterOnce(size_t opIndex)
{
backtrackTermDefault(opIndex);
}
void generatePatternCharacterFixed(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
char32_t ch = term->patternCharacter;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
if (m_decodeSurrogatePairs)
op.m_jumps.append(jumpIfNoAvailableInput());
Checked<unsigned> scaledMaxCount = term->quantityMaxCount;
scaledMaxCount *= U_IS_BMP(ch) ? 1 : 2;
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(scaledMaxCount), countRegister);
MacroAssembler::Label loop(&m_jit);
readCharacter(op.m_checkedOffset - term->inputPosition - scaledMaxCount, character, countRegister);
// For case-insesitive compares, non-ascii characters that have different
// upper & lower case representations are converted to a character class.
ASSERT(!term->ignoreCase() || isASCIIAlpha(ch) || isCanonicallyUnique(ch, m_canonicalMode));
if (term->ignoreCase() && isASCIIAlpha(ch)) {
m_jit.or32(MacroAssembler::TrustedImm32(0x20), character);
ch |= 0x20;
}
op.m_jumps.append(m_jit.branch32(MacroAssembler::NotEqual, character, MacroAssembler::Imm32(ch)));
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs && !U_IS_BMP(ch))
m_jit.add32(MacroAssembler::TrustedImm32(2), countRegister);
else
#endif
m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
m_jit.branch32(MacroAssembler::NotEqual, countRegister, m_regs.index).linkTo(loop, &m_jit);
}
void backtrackPatternCharacterFixed(size_t opIndex)
{
backtrackTermDefault(opIndex);
}
void generatePatternCharacterGreedy(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
char32_t ch = term->patternCharacter;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
m_jit.move(MacroAssembler::TrustedImm32(0), countRegister);
// Unless have a 16 bit pattern character and an 8 bit string - short circuit
if (!(!isLatin1(ch) && (m_charSize == CharSize::Char8))) {
MacroAssembler::JumpList failures;
MacroAssembler::Label loop(&m_jit);
failures.append(atEndOfInput());
failures.append(jumpIfCharNotEquals(ch, op.m_checkedOffset - term->inputPosition, character, term->ignoreCase()));
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs && !U_IS_BMP(ch)) {
MacroAssembler::Jump surrogatePairOk = notAtEndOfInput();
m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
failures.append(m_jit.jump());
surrogatePairOk.link(&m_jit);
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
}
#endif
m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
if (term->quantityMaxCount == quantifyInfinite)
m_jit.jump(loop);
else
m_jit.branch32(MacroAssembler::NotEqual, countRegister, MacroAssembler::Imm32(term->quantityMaxCount)).linkTo(loop, &m_jit);
failures.link(&m_jit);
}
op.m_reentry = m_jit.label();
storeToFrame(countRegister, term->frameLocation + BackTrackInfoPatternCharacter::matchAmountIndex());
}
void backtrackPatternCharacterGreedy(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
m_backtrackingState.link(&m_jit);
loadFromFrame(term->frameLocation + BackTrackInfoPatternCharacter::matchAmountIndex(), countRegister);
m_backtrackingState.append(m_jit.branchTest32(MacroAssembler::Zero, countRegister));
m_jit.sub32(MacroAssembler::TrustedImm32(1), countRegister);
if (!m_decodeSurrogatePairs || U_IS_BMP(term->patternCharacter))
m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
else
m_jit.sub32(MacroAssembler::TrustedImm32(2), m_regs.index);
m_jit.jump(op.m_reentry);
}
void generatePatternCharacterNonGreedy(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
m_jit.move(MacroAssembler::TrustedImm32(0), countRegister);
op.m_reentry = m_jit.label();
storeToFrame(countRegister, term->frameLocation + BackTrackInfoPatternCharacter::matchAmountIndex());
}
void backtrackPatternCharacterNonGreedy(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
char32_t ch = term->patternCharacter;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
m_backtrackingState.link(&m_jit);
loadFromFrame(term->frameLocation + BackTrackInfoPatternCharacter::matchAmountIndex(), countRegister);
// Unless have a 16 bit pattern character and an 8 bit string - short circuit
if (!(!isLatin1(ch) && (m_charSize == CharSize::Char8))) {
MacroAssembler::JumpList nonGreedyFailures;
nonGreedyFailures.append(atEndOfInput());
if (term->quantityMaxCount != quantifyInfinite)
nonGreedyFailures.append(m_jit.branch32(MacroAssembler::Equal, countRegister, MacroAssembler::Imm32(term->quantityMaxCount)));
nonGreedyFailures.append(jumpIfCharNotEquals(ch, op.m_checkedOffset - term->inputPosition, character, term->ignoreCase()));
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs && !U_IS_BMP(ch)) {
MacroAssembler::Jump surrogatePairOk = notAtEndOfInput();
m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
nonGreedyFailures.append(m_jit.jump());
surrogatePairOk.link(&m_jit);
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
}
#endif
m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
m_jit.jump(op.m_reentry);
nonGreedyFailures.link(&m_jit);
}
if (m_decodeSurrogatePairs && !U_IS_BMP(ch)) {
// subtract countRegister*2 for non-BMP characters
m_jit.lshift32(MacroAssembler::TrustedImm32(1), countRegister);
}
m_jit.sub32(countRegister, m_regs.index);
m_backtrackingState.fallthrough();
}
void generateCharacterClassOnce(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID scratch = m_regs.regT1;
if (m_decodeSurrogatePairs) {
op.m_jumps.append(jumpIfNoAvailableInput());
storeToFrame(m_regs.index, term->frameLocation + BackTrackInfoCharacterClass::beginIndex());
}
readCharacter(op.m_checkedOffset - term->inputPosition, character);
matchCharacterClassTermInner(term, op.m_jumps, character, scratch);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs && (!term->characterClass->hasOneCharacterSize() || term->invert())) {
MacroAssembler::Jump isBMPChar = m_jit.branch32(MacroAssembler::LessThan, character, MacroAssembler::TrustedImm32(0x10000));
op.m_jumps.append(atEndOfInput());
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
isBMPChar.link(&m_jit);
}
#endif
}
void backtrackCharacterClassOnce(size_t opIndex, bool fallThroughToCharacterClassFixedCount)
{
UNUSED_PARAM(fallThroughToCharacterClassFixedCount);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs) {
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
m_backtrackingState.link(&m_jit);
// If we fallthough to the same CharacterClassOnce, we will override this index register, so we do not need to load here.
if (!fallThroughToCharacterClassFixedCount)
loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::beginIndex(), m_regs.index);
m_backtrackingState.fallthrough();
}
#endif
backtrackTermDefault(opIndex);
}
void generateCharacterClassFixed(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
const MacroAssembler::RegisterID scratch = m_regs.regT2;
m_usesT2 = true;
MacroAssembler::JumpList done;
if (m_decodeSurrogatePairs)
op.m_jumps.append(jumpIfNoAvailableInput());
Checked<unsigned> scaledMaxCount = term->quantityMaxCount;
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
bool nonBMPOnly = false;
if (m_decodeSurrogatePairs && term->characterClass->hasOnlyNonBMPCharacters() && !term->invert()) {
scaledMaxCount *= 2;
nonBMPOnly = true;
}
#endif
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(scaledMaxCount), countRegister);
MacroAssembler::Label loop(&m_jit);
readCharacter(op.m_checkedOffset - term->inputPosition - scaledMaxCount, character, countRegister);
MacroAssembler::Label nonBMPLoop(&m_jit);
matchCharacterClassTermInner(term, op.m_jumps, character, scratch);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs) {
if (term->isFixedWidthCharacterClass())
m_jit.add32(MacroAssembler::TrustedImm32(term->characterClass->hasNonBMPCharacters() ? 2 : 1), countRegister);
else {
m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
MacroAssembler::Jump isBMPChar = m_jit.branch32(MacroAssembler::LessThan, character, MacroAssembler::TrustedImm32(0x10000));
op.m_jumps.append(atEndOfInput());
m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
isBMPChar.link(&m_jit);
}
} else
#endif
m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (nonBMPOnly) {
done.append(m_jit.branch32(MacroAssembler::Equal, countRegister, m_regs.index));
tryReadNonBMPUnicodeChar(op.m_checkedOffset - term->inputPosition - scaledMaxCount, character, countRegister);
m_jit.jump().linkTo(nonBMPLoop, &m_jit);
} else
#endif
m_jit.branch32(MacroAssembler::NotEqual, countRegister, m_regs.index).linkTo(loop, &m_jit);
done.link(&m_jit);
}
void backtrackCharacterClassFixed(size_t opIndex)
{
backtrackTermDefault(opIndex);
}
void generateCharacterClassGreedy(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
const MacroAssembler::RegisterID scratch = m_regs.regT2;
m_usesT2 = true;
if (m_decodeSurrogatePairs && (!term->characterClass->hasOneCharacterSize() || term->invert()))
storeToFrame(m_regs.index, term->frameLocation + BackTrackInfoCharacterClass::beginIndex());
m_jit.move(MacroAssembler::TrustedImm32(0), countRegister);
MacroAssembler::JumpList failures;
MacroAssembler::JumpList failuresDecrementIndex;
MacroAssembler::Label loop(&m_jit);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (term->isFixedWidthCharacterClass() && term->characterClass->hasNonBMPCharacters()) {
m_jit.move(MacroAssembler::TrustedImm32(1), character);
failures.append(checkNotEnoughInput(character));
} else
#endif
failures.append(atEndOfInput());
readCharacter(op.m_checkedOffset - term->inputPosition, character);
matchCharacterClassTermInner(term, failures, character, scratch);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs)
advanceIndexAfterCharacterClassTermMatch(term, failuresDecrementIndex, character);
else
#endif
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
if (term->quantityMaxCount == quantifyInfinite)
m_jit.jump(loop);
else {
m_jit.branch32(MacroAssembler::NotEqual, countRegister, MacroAssembler::Imm32(term->quantityMaxCount)).linkTo(loop, &m_jit);
if (!failuresDecrementIndex.empty()) {
// Don't emit the superfluous jump to the next instruction if we don't have any failuresDecrementIndex jumps to link.
failures.append(m_jit.jump());
}
}
if (!failuresDecrementIndex.empty()) {
failuresDecrementIndex.link(&m_jit);
m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
}
failures.link(&m_jit);
op.m_reentry = m_jit.label();
storeToFrame(countRegister, term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex());
}
void backtrackCharacterClassGreedy(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
m_backtrackingState.link(&m_jit);
loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex(), countRegister);
m_backtrackingState.append(m_jit.branchTest32(MacroAssembler::Zero, countRegister));
m_jit.sub32(MacroAssembler::TrustedImm32(1), countRegister);
storeToFrame(countRegister, term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex());
if (!m_decodeSurrogatePairs)
m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
else if (term->isFixedWidthCharacterClass())
m_jit.sub32(MacroAssembler::TrustedImm32(term->characterClass->hasNonBMPCharacters() ? 2 : 1), m_regs.index);
else {
// Rematch one less
const MacroAssembler::RegisterID character = m_regs.regT0;
loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::beginIndex(), m_regs.index);
MacroAssembler::Label rematchLoop(&m_jit);
MacroAssembler::Jump doneRematching = m_jit.branchTest32(MacroAssembler::Zero, countRegister);
readCharacter(op.m_checkedOffset - term->inputPosition, character);
m_jit.sub32(MacroAssembler::TrustedImm32(1), countRegister);
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
MacroAssembler::Jump isBMPChar = m_jit.branch32(MacroAssembler::LessThan, character, MacroAssembler::TrustedImm32(0x10000));
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
isBMPChar.link(&m_jit);
#endif
m_jit.jump(rematchLoop);
doneRematching.link(&m_jit);
loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex(), countRegister);
}
m_jit.jump(op.m_reentry);
}
void generateCharacterClassNonGreedy(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
m_jit.move(MacroAssembler::TrustedImm32(0), countRegister);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs)
storeToFrame(m_regs.index, term->frameLocation + BackTrackInfoCharacterClass::beginIndex());
#endif
op.m_reentry = m_jit.label();
storeToFrame(countRegister, term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex());
}
void backtrackCharacterClassNonGreedy(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID countRegister = m_regs.regT1;
const MacroAssembler::RegisterID scratch = m_regs.regT2;
m_usesT2 = true;
MacroAssembler::JumpList nonGreedyFailures;
MacroAssembler::JumpList nonGreedyFailuresDecrementIndex;
m_backtrackingState.link(&m_jit);
loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::matchAmountIndex(), countRegister);
nonGreedyFailures.append(atEndOfInput());
nonGreedyFailures.append(m_jit.branch32(MacroAssembler::Equal, countRegister, MacroAssembler::Imm32(term->quantityMaxCount)));
readCharacter(op.m_checkedOffset - term->inputPosition, character);
matchCharacterClassTermInner(term, nonGreedyFailures, character, scratch);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs)
advanceIndexAfterCharacterClassTermMatch(term, nonGreedyFailuresDecrementIndex, character);
else
#endif
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
m_jit.add32(MacroAssembler::TrustedImm32(1), countRegister);
m_jit.jump(op.m_reentry);
if (!nonGreedyFailuresDecrementIndex.empty()) {
nonGreedyFailuresDecrementIndex.link(&m_jit);
m_jit.sub32(MacroAssembler::TrustedImm32(1), m_regs.index);
}
nonGreedyFailures.link(&m_jit);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs)
loadFromFrame(term->frameLocation + BackTrackInfoCharacterClass::beginIndex(), m_regs.index);
else
#endif
m_jit.sub32(countRegister, m_regs.index);
m_backtrackingState.fallthrough();
}
void generateDotStarEnclosure(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID character = m_regs.regT0;
const MacroAssembler::RegisterID matchPos = m_regs.regT1;
const MacroAssembler::RegisterID scratch = m_regs.regT2;
m_usesT2 = true;
MacroAssembler::JumpList foundBeginningNewLine;
MacroAssembler::JumpList saveStartIndex;
MacroAssembler::JumpList foundEndingNewLine;
if (term->dotAll()) {
m_jit.move(MacroAssembler::TrustedImm32(0), matchPos);
setMatchStart(matchPos);
m_jit.move(m_regs.length, m_regs.index);
return;
}
ASSERT(!m_pattern.m_body->m_hasFixedSize);
getMatchStart(matchPos);
saveStartIndex.append(m_jit.branch32(MacroAssembler::BelowOrEqual, matchPos, m_regs.initialStart));
MacroAssembler::Label findBOLLoop(&m_jit);
m_jit.sub32(MacroAssembler::TrustedImm32(1), matchPos);
if (m_charSize == CharSize::Char8)
m_jit.load8(MacroAssembler::BaseIndex(m_regs.input, matchPos, MacroAssembler::TimesOne, 0), character);
else
m_jit.load16(MacroAssembler::BaseIndex(m_regs.input, matchPos, MacroAssembler::TimesTwo, 0), character);
matchCharacterClass(character, scratch, foundBeginningNewLine, m_pattern.newlineCharacterClass());
m_jit.branch32(MacroAssembler::Above, matchPos, m_regs.initialStart).linkTo(findBOLLoop, &m_jit);
saveStartIndex.append(m_jit.jump());
foundBeginningNewLine.link(&m_jit);
m_jit.add32(MacroAssembler::TrustedImm32(1), matchPos); // Advance past newline
saveStartIndex.link(&m_jit);
if (!term->multiline() && term->anchors.bolAnchor)
op.m_jumps.append(m_jit.branchTest32(MacroAssembler::NonZero, matchPos));
ASSERT(!m_pattern.m_body->m_hasFixedSize);
setMatchStart(matchPos);
m_jit.move(m_regs.index, matchPos);
MacroAssembler::Label findEOLLoop(&m_jit);
foundEndingNewLine.append(m_jit.branch32(MacroAssembler::Equal, matchPos, m_regs.length));
if (m_charSize == CharSize::Char8)
m_jit.load8(MacroAssembler::BaseIndex(m_regs.input, matchPos, MacroAssembler::TimesOne, 0), character);
else
m_jit.load16(MacroAssembler::BaseIndex(m_regs.input, matchPos, MacroAssembler::TimesTwo, 0), character);
matchCharacterClass(character, scratch, foundEndingNewLine, m_pattern.newlineCharacterClass());
m_jit.add32(MacroAssembler::TrustedImm32(1), matchPos);
m_jit.jump(findEOLLoop);
foundEndingNewLine.link(&m_jit);
if (!term->multiline() && term->anchors.eolAnchor)
op.m_jumps.append(m_jit.branch32(MacroAssembler::NotEqual, matchPos, m_regs.length));
m_jit.move(matchPos, m_regs.index);
}
void backtrackDotStarEnclosure(size_t opIndex)
{
backtrackTermDefault(opIndex);
}
// Code generation/backtracking for simple terms
// (pattern characters, character classes, and assertions).
// These methods farm out work to the set of functions above.
void generateTerm(size_t opIndex, MatchTargets& matchTargets)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
switch (term->type) {
case PatternTerm::Type::PatternCharacter:
switch (term->quantityType) {
case QuantifierType::FixedCount:
if (term->quantityMaxCount == 1)
generatePatternCharacterOnce(opIndex, matchTargets);
else
generatePatternCharacterFixed(opIndex);
break;
case QuantifierType::Greedy:
generatePatternCharacterGreedy(opIndex);
break;
case QuantifierType::NonGreedy:
generatePatternCharacterNonGreedy(opIndex);
break;
}
break;
case PatternTerm::Type::CharacterClass:
switch (term->quantityType) {
case QuantifierType::FixedCount:
if (term->quantityMaxCount == 1)
generateCharacterClassOnce(opIndex);
else
generateCharacterClassFixed(opIndex);
break;
case QuantifierType::Greedy:
generateCharacterClassGreedy(opIndex);
break;
case QuantifierType::NonGreedy:
generateCharacterClassNonGreedy(opIndex);
break;
}
break;
case PatternTerm::Type::AssertionBOL:
generateAssertionBOL(opIndex);
break;
case PatternTerm::Type::AssertionEOL:
generateAssertionEOL(opIndex);
break;
case PatternTerm::Type::AssertionWordBoundary:
generateAssertionWordBoundary(opIndex);
break;
case PatternTerm::Type::ForwardReference:
m_failureReason = JITFailureReason::ForwardReference;
break;
case PatternTerm::Type::ParenthesesSubpattern:
case PatternTerm::Type::ParentheticalAssertion:
RELEASE_ASSERT_NOT_REACHED();
case PatternTerm::Type::BackReference:
#if ENABLE(YARR_JIT_BACKREFERENCES)
generateBackReference(opIndex);
#else
m_failureReason = JITFailureReason::BackReference;
#endif
break;
case PatternTerm::Type::DotStarEnclosure:
generateDotStarEnclosure(opIndex);
break;
}
}
void backtrackTerm(size_t opIndex)
{
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
switch (term->type) {
case PatternTerm::Type::PatternCharacter:
switch (term->quantityType) {
case QuantifierType::FixedCount:
if (term->quantityMaxCount == 1)
backtrackPatternCharacterOnce(opIndex);
else
backtrackPatternCharacterFixed(opIndex);
break;
case QuantifierType::Greedy:
backtrackPatternCharacterGreedy(opIndex);
break;
case QuantifierType::NonGreedy:
backtrackPatternCharacterNonGreedy(opIndex);
break;
}
break;
case PatternTerm::Type::CharacterClass:
switch (term->quantityType) {
case QuantifierType::FixedCount:
if (term->quantityMaxCount == 1) {
bool fallThroughToCharacterClassFixedCount = false;
if (opIndex != 0) {
auto& previousOp = m_ops[opIndex - 1];
if (previousOp.m_op == YarrOpCode::Term) {
auto* term = previousOp.m_term;
if (term->type == PatternTerm::Type::CharacterClass && term->quantityType == QuantifierType::FixedCount)
fallThroughToCharacterClassFixedCount = true;
}
}
backtrackCharacterClassOnce(opIndex, fallThroughToCharacterClassFixedCount);
} else
backtrackCharacterClassFixed(opIndex);
break;
case QuantifierType::Greedy:
backtrackCharacterClassGreedy(opIndex);
break;
case QuantifierType::NonGreedy:
backtrackCharacterClassNonGreedy(opIndex);
break;
}
break;
case PatternTerm::Type::AssertionBOL:
backtrackAssertionBOL(opIndex);
break;
case PatternTerm::Type::AssertionEOL:
backtrackAssertionEOL(opIndex);
break;
case PatternTerm::Type::AssertionWordBoundary:
backtrackAssertionWordBoundary(opIndex);
break;
case PatternTerm::Type::ForwardReference:
m_failureReason = JITFailureReason::ForwardReference;
break;
case PatternTerm::Type::ParenthesesSubpattern:
case PatternTerm::Type::ParentheticalAssertion:
RELEASE_ASSERT_NOT_REACHED();
case PatternTerm::Type::BackReference:
#if ENABLE(YARR_JIT_BACKREFERENCES)
backtrackBackReference(opIndex);
#else
m_failureReason = JITFailureReason::BackReference;
#endif
break;
case PatternTerm::Type::DotStarEnclosure:
backtrackDotStarEnclosure(opIndex);
break;
}
}
void generate()
{
// Forwards generate the matching code.
ASSERT(m_ops.size());
size_t opIndex = 0;
Vector<MatchTargets, 8> termMatchTargets;
termMatchTargets.append(MatchTargets());
do {
if (m_disassembler)
m_disassembler->setForGenerate(opIndex, m_jit.label());
YarrOp& op = m_ops[opIndex];
switch (op.m_op) {
case YarrOpCode::Term:
generateTerm(opIndex, termMatchTargets.last());
break;
// YarrOpCode::BodyAlternativeBegin/Next/End
//
// These nodes wrap the set of alternatives in the body of the regular expression.
// There may be either one or two chains of OpBodyAlternative nodes, one representing
// the 'once through' sequence of alternatives (if any exist), and one representing
// the repeating alternatives (again, if any exist).
//
// Upon normal entry to the Begin alternative, we will check that input is available.
// Reentry to the Begin alternative will take place after the check has taken place,
// and will assume that the input position has already been progressed as appropriate.
//
// Entry to subsequent Next/End alternatives occurs when the prior alternative has
// successfully completed a match - return a success state from JIT code.
//
// Next alternatives allow for reentry optimized to suit backtracking from its
// preceding alternative. It expects the input position to still be set to a position
// appropriate to its predecessor, and it will only perform an input check if the
// predecessor had a minimum size less than its own.
//
// In the case 'once through' expressions, the End node will also have a reentry
// point to jump to when the last alternative fails. Again, this expects the input
// position to still reflect that expected by the prior alternative.
case YarrOpCode::BodyAlternativeBegin: {
PatternAlternative* alternative = op.m_alternative;
termMatchTargets.append(MatchTargets());
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
// Initialize before input check to prevent uninitialized data in arithmetic.
if (m_useFirstNonBMPCharacterOptimization)
m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.firstCharacterAdditionalReadSize);
#endif
// Upon entry at the head of the set of alternatives, check if input is available
// to run the first alternative. (This progresses the input position).
op.m_jumps.append(jumpIfNoAvailableInput(alternative->m_minimumSize));
// We will reenter after the check, and assume the input position to have been
// set as appropriate to this alternative.
op.m_reentry = m_jit.label();
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
// Initialize after reentry to ensure fresh register state on backtrack retries,
// since character reading operations modify this register during execution.
if (m_useFirstNonBMPCharacterOptimization)
m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.firstCharacterAdditionalReadSize);
#endif
// Emit fast skip path with stride if we have BoyerMooreInfo.
if (op.m_bmInfo) {
auto range = op.m_bmInfo->findWorthwhileCharacterSequenceForLookahead(m_sampler);
if (range) {
auto [beginIndex, endIndex] = *range;
ASSERT(endIndex <= alternative->m_minimumSize);
auto [map, charactersFastPath] = op.m_bmInfo->createCandidateBitmap(beginIndex, endIndex);
unsigned mapCount = map.count();
// If candiate characters are <= 2, checking each is better than using vector.
MacroAssembler::JumpList matched;
dataLogLnIf(YarrJITInternal::verbose, "BM Bitmap is ", map);
// Patterns like /[]/ have zero candidates. Since it is rare, we do not do nothing for now.
if (!mapCount)
break;
if (charactersFastPath.isValid() && !charactersFastPath.isEmpty()) {
static_assert(BoyerMooreFastCandidates::maxSize == 2);
dataLogLnIf(Options::verboseRegExpCompilation(), "Found characters fastpath lookahead ", charactersFastPath, " range:[", beginIndex, ", ", endIndex, ")");
JIT_COMMENT(m_jit, "BMSearch characters fastpath lookahead ", charactersFastPath, " range:[", beginIndex, ", ", endIndex, ")");
auto loopHead = m_jit.label();
readCharacter(op.m_checkedOffset - endIndex + 1, m_regs.regT0);
matched.append(m_jit.branch32(MacroAssembler::Equal, m_regs.regT0, MacroAssembler::TrustedImm32(charactersFastPath.at(0))));
if (charactersFastPath.size() > 1)
matched.append(m_jit.branch32(MacroAssembler::Equal, m_regs.regT0, MacroAssembler::TrustedImm32(charactersFastPath.at(1))));
jumpIfAvailableInput(endIndex - beginIndex).linkTo(loopHead, &m_jit);
} else {
auto span = getBoyerMooreBitmap(map);
dataLogLnIf(Options::verboseRegExpCompilation(), "Found bitmap lookahead count:(", mapCount, "),range:[", beginIndex, ", ", endIndex, ")");
JIT_COMMENT(m_jit, "BMSearch bitmap lookahead count:(", mapCount, "),range:[", beginIndex, ", ", endIndex, ")");
ASSERT(span.size());
m_jit.move(MacroAssembler::TrustedImmPtr(span.data()), m_regs.regT1);
auto loopHead = m_jit.label();
readCharacter(op.m_checkedOffset - endIndex + 1, m_regs.regT0);
#if CPU(ARM64) || CPU(RISCV64)
static_assert(sizeof(BoyerMooreBitmap::Map::WordType) == sizeof(uint64_t));
static_assert(1 << 6 == 64);
static_assert(1 << (6 + 1) == BoyerMooreBitmap::Map::size());
m_jit.extractUnsignedBitfield32(m_regs.regT0, MacroAssembler::TrustedImm32(6), MacroAssembler::TrustedImm32(1), m_regs.regT2); // Extract 1 bit for index.
m_jit.load64(MacroAssembler::BaseIndex(m_regs.regT1, m_regs.regT2, MacroAssembler::TimesEight), m_regs.regT2);
m_jit.urshift64(m_regs.regT0, m_regs.regT2); // We can ignore upper bits and only lower 6bits are effective.
matched.append(m_jit.branchTest64(MacroAssembler::NonZero, m_regs.regT2, MacroAssembler::TrustedImm32(1)));
#elif CPU(X86_64)
static_assert(sizeof(BoyerMooreBitmap::Map::WordType) == sizeof(uint64_t));
static_assert(1 << 6 == 64);
static_assert(1 << (6 + 1) == BoyerMooreBitmap::Map::size());
m_jit.urshift32(m_regs.regT0, MacroAssembler::TrustedImm32(6), m_regs.regT2);
m_jit.and32(MacroAssembler::TrustedImm32(1), m_regs.regT2);
m_jit.load64(MacroAssembler::BaseIndex(m_regs.regT1, m_regs.regT2, MacroAssembler::TimesEight), m_regs.regT2);
matched.append(m_jit.branchTestBit64(MacroAssembler::NonZero, m_regs.regT2, m_regs.regT0)); // We can ignore upper bits since modulo-64 is performed.
#else
static_assert(sizeof(BoyerMooreBitmap::Map::WordType) == sizeof(uint32_t));
static_assert(1 << 5 == 32);
static_assert(1 << (5 + 2) == BoyerMooreBitmap::Map::size());
m_jit.move(m_regs.regT0, m_regs.regT2);
m_jit.urshift32(MacroAssembler::TrustedImm32(5), m_regs.regT2);
m_jit.and32(MacroAssembler::TrustedImm32(0b11), m_regs.regT2);
m_jit.load32(MacroAssembler::BaseIndex(m_regs.regT1, m_regs.regT2, MacroAssembler::TimesFour), m_regs.regT2);
m_jit.urshift32(m_regs.regT0, m_regs.regT2); // We can ignore upper bits and only lower 5bits are effective.
matched.append(m_jit.branchTest32(MacroAssembler::NonZero, m_regs.regT2, MacroAssembler::TrustedImm32(1)));
#endif
jumpIfAvailableInput(endIndex - beginIndex).linkTo(loopHead, &m_jit);
}
// Fallthrough if out-of-length failure happens.
// If the pattern size is not fixed, then store the start index for use if we match.
// This is used for adjusting match-start when we failed to find the start with BoyerMoore search.
if (!m_pattern.m_body->m_hasFixedSize) {
if (alternative->m_minimumSize) {
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(alternative->m_minimumSize), m_regs.regT0);
setMatchStart(m_regs.regT0);
} else
setMatchStart(m_regs.index);
op.m_jumps.append(m_jit.jump());
} else
op.m_jumps.append(m_jit.jump());
matched.link(&m_jit);
// If the pattern size is not fixed, then store the start index for use if we match.
// This is used for adjusting match-start when we start pattern matching with the updated index
// by BoyerMoore search.
if (!m_pattern.m_body->m_hasFixedSize) {
if (alternative->m_minimumSize) {
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(alternative->m_minimumSize), m_regs.regT0);
setMatchStart(m_regs.regT0);
} else
setMatchStart(m_regs.index);
}
} else
dataLogLnIf(Options::verboseRegExpCompilation(), "BM search candidates were not efficient enough. Not using BM search");
}
break;
}
case YarrOpCode::BodyAlternativeNext:
case YarrOpCode::BodyAlternativeEnd: {
PatternAlternative* priorAlternative = m_ops[op.m_previousOp].m_alternative;
PatternAlternative* alternative = op.m_alternative;
if (op.m_op == YarrOpCode::BodyAlternativeEnd)
termMatchTargets.takeLast();
// If we get here, the prior alternative matched - return success.
// Load appropriate values into the return register and the first output
// slot, and return. In the case of pattern with a fixed size, we will
// not have yet set the value in the first
ASSERT(m_regs.index != m_regs.returnRegister);
ASSERT(m_regs.output != m_regs.returnRegister);
if (m_pattern.m_body->m_hasFixedSize) {
if (priorAlternative->m_minimumSize)
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(priorAlternative->m_minimumSize), m_regs.returnRegister);
else
m_jit.move(m_regs.index, m_regs.returnRegister);
if (m_compileMode == JITCompileMode::IncludeSubpatterns)
m_jit.storePair32(m_regs.returnRegister, m_regs.index, m_regs.output, MacroAssembler::TrustedImm32(0));
} else {
getMatchStart(m_regs.returnRegister);
if (m_compileMode == JITCompileMode::IncludeSubpatterns)
m_jit.store32(m_regs.index, MacroAssembler::Address(m_regs.output, 4));
}
m_jit.move(m_regs.index, m_regs.returnRegister2);
generateReturn();
// This is the divide between the tail of the prior alternative, above, and
// the head of the subsequent alternative, below.
if (op.m_op == YarrOpCode::BodyAlternativeNext) {
// This is the reentry point for the Next alternative. We expect any code
// that jumps here to do so with the input position matching that of the
// PRIOR alteranative, and we will only check input availability if we
// need to progress it forwards.
op.m_reentry = m_jit.label();
if (m_compileMode == JITCompileMode::IncludeSubpatterns
&& priorAlternative->needToCleanupCaptures()) {
for (unsigned subpattern = priorAlternative->firstCleanupSubpatternId(); subpattern <= priorAlternative->m_lastSubpatternId; subpattern++)
clearSubpatternStart(subpattern);
}
if (alternative->m_minimumSize > priorAlternative->m_minimumSize) {
m_jit.add32(MacroAssembler::Imm32(alternative->m_minimumSize - priorAlternative->m_minimumSize), m_regs.index);
op.m_jumps.append(jumpIfNoAvailableInput());
} else if (priorAlternative->m_minimumSize > alternative->m_minimumSize)
m_jit.sub32(MacroAssembler::Imm32(priorAlternative->m_minimumSize - alternative->m_minimumSize), m_regs.index);
} else if (op.m_nextOp == notFound) {
// This is the reentry point for the End of 'once through' alternatives,
// jumped to when the last alternative fails to match.
op.m_reentry = m_jit.label();
m_jit.sub32(MacroAssembler::Imm32(priorAlternative->m_minimumSize), m_regs.index);
}
break;
}
// YarrOpCode::SimpleNestedAlternativeBegin/Next/End
// YarrOpCode::StringListAlternativeBegin/Next/End
// YarrOpCode::NestedAlternativeBegin/Next/End
//
// These nodes are used to handle sets of alternatives that are nested within
// subpatterns and parenthetical assertions. The 'simple' forms are used where
// we do not need to be able to backtrack back into any alternative other than
// the last, the normal forms allow backtracking into any alternative.
//
// Each Begin/Next node is responsible for planting an input check to ensure
// sufficient input is available on entry. Next nodes additionally need to
// jump to the end - Next nodes use the End node's m_jumps list to hold this
// set of jumps.
//
// In the non-simple forms, successful alternative matches must store a
// 'return address' using a DataLabelPtr, used to store the address to jump
// to when backtracking, to get to the code for the appropriate alternative.
case YarrOpCode::SimpleNestedAlternativeBegin:
case YarrOpCode::StringListAlternativeBegin:
case YarrOpCode::NestedAlternativeBegin: {
PatternTerm* term = op.m_term;
PatternAlternative* alternative = op.m_alternative;
PatternDisjunction* disjunction = term->parentheses.disjunction;
if (op.m_op == YarrOpCode::StringListAlternativeBegin) {
YarrOp* endOp = &m_ops[op.m_nextOp];
while (endOp->m_nextOp != notFound) {
ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeNext || endOp->m_op == YarrOpCode::StringListAlternativeNext || endOp->m_op == YarrOpCode::NestedAlternativeNext);
endOp = &m_ops[endOp->m_nextOp];
}
ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeEnd || endOp->m_op == YarrOpCode::StringListAlternativeEnd || endOp->m_op == YarrOpCode::NestedAlternativeEnd);
termMatchTargets.last() = alternative->m_isLastAlternative ? MatchTargets(MatchTargets::PreferredTarget::MatchSuccessFallThrough) : MatchTargets(endOp->m_jumps, op.m_jumps, MatchTargets::PreferredTarget::MatchFailFallThrough);
}
// Calculate how much input we need to check for, and if non-zero check.
op.m_checkAdjust = Checked<unsigned>(alternative->m_minimumSize);
if ((term->quantityType == QuantifierType::FixedCount) && (term->type != PatternTerm::Type::ParentheticalAssertion))
op.m_checkAdjust -= disjunction->m_minimumSize;
if (op.m_checkAdjust)
op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust));
break;
}
case YarrOpCode::SimpleNestedAlternativeNext:
case YarrOpCode::StringListAlternativeNext:
case YarrOpCode::NestedAlternativeNext: {
PatternTerm* term = op.m_term;
PatternAlternative* alternative = op.m_alternative;
PatternDisjunction* disjunction = term->parentheses.disjunction;
YarrOp* endOp = &m_ops[op.m_nextOp];
while (endOp->m_nextOp != notFound) {
ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeNext || endOp->m_op == YarrOpCode::StringListAlternativeNext || endOp->m_op == YarrOpCode::NestedAlternativeNext);
endOp = &m_ops[endOp->m_nextOp];
}
ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeEnd || endOp->m_op == YarrOpCode::StringListAlternativeEnd || endOp->m_op == YarrOpCode::NestedAlternativeEnd);
if (op.m_op == YarrOpCode::StringListAlternativeNext)
termMatchTargets.last() = alternative->m_isLastAlternative ? MatchTargets(MatchTargets::PreferredTarget::MatchSuccessFallThrough) : MatchTargets(endOp->m_jumps, op.m_jumps, MatchTargets::PreferredTarget::MatchFailFallThrough);
// In the non-simple case, store a 'return address' so we can backtrack correctly.
if (op.m_op == YarrOpCode::NestedAlternativeNext) {
unsigned parenthesesFrameLocation = term->frameLocation;
op.m_returnAddress = storeToFrameWithPatch(parenthesesFrameLocation + BackTrackInfoParentheses::returnAddressIndex());
}
if (term->quantityType != QuantifierType::FixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) {
// If the previous alternative matched without consuming characters then
// backtrack to try to match while consumming some input.
op.m_zeroLengthMatch = m_jit.branch32(MacroAssembler::Equal, m_regs.index, frameAddress().withOffset(term->frameLocation * sizeof(void*)));
}
if (op.m_op != YarrOpCode::StringListAlternativeNext) {
// If we reach here then the last alternative has matched - jump to the
// End node, to skip over any further alternatives.
//
// FIXME: this is logically O(N^2) (though N can be expected to be very
// small). We could avoid this either by adding an extra jump to the JIT
// data structures, or by making backtracking code that jumps to Next
// alternatives are responsible for checking that input is available (if
// we didn't need to plant the input checks, then m_jumps would be free).
endOp->m_jumps.append(m_jit.jump());
}
// This is the entry point for the next alternative.
op.m_reentry = m_jit.label();
// Calculate how much input we need to check for, and if non-zero check.
op.m_checkAdjust = alternative->m_minimumSize;
if ((term->quantityType == QuantifierType::FixedCount) && (term->type != PatternTerm::Type::ParentheticalAssertion))
op.m_checkAdjust -= disjunction->m_minimumSize;
if (op.m_op == YarrOpCode::StringListAlternativeNext) {
YarrOp* prevOp = &m_ops[op.m_previousOp];
prevOp->m_jumps.link(&m_jit);
prevOp->m_jumps.clear();
op.m_jumps.link(&m_jit);
op.m_jumps.clear();
auto lastCheckAdjust = prevOp->m_checkAdjust;
if (lastCheckAdjust > op.m_checkAdjust)
m_jit.sub32(MacroAssembler::Imm32(lastCheckAdjust - op.m_checkAdjust), m_regs.index);
else if (op.m_checkAdjust > lastCheckAdjust)
m_jit.add32(MacroAssembler::Imm32(op.m_checkAdjust - lastCheckAdjust), m_regs.index);
op.m_jumps.append(jumpIfNoAvailableInput());
} else if (op.m_checkAdjust)
op.m_jumps.append(jumpIfNoAvailableInput(op.m_checkAdjust));
break;
}
case YarrOpCode::SimpleNestedAlternativeEnd:
case YarrOpCode::StringListAlternativeEnd:
case YarrOpCode::NestedAlternativeEnd: {
PatternTerm* term = op.m_term;
// In the non-simple case, store a 'return address' so we can backtrack correctly.
if (op.m_op == YarrOpCode::NestedAlternativeEnd) {
unsigned parenthesesFrameLocation = term->frameLocation;
op.m_returnAddress = storeToFrameWithPatch(parenthesesFrameLocation + BackTrackInfoParentheses::returnAddressIndex());
}
if (term->quantityType != QuantifierType::FixedCount && !m_ops[op.m_previousOp].m_alternative->m_minimumSize) {
// If the previous alternative matched without consuming characters then
// backtrack to try to match while consumming some input.
op.m_zeroLengthMatch = m_jit.branch32(MacroAssembler::Equal, m_regs.index, frameAddress().withOffset(term->frameLocation * sizeof(void*)));
}
// If this set of alternatives contains more than one alternative,
// then the Next nodes will have planted jumps to the End, and added
// them to this node's m_jumps list.
op.m_jumps.link(&m_jit);
op.m_jumps.clear();
break;
}
// YarrOpCode::ParenthesesSubpatternOnceBegin/End
//
// These nodes support (optionally) capturing subpatterns, that have a
// quantity count of 1 (this covers fixed once, and ?/?? quantifiers).
case YarrOpCode::ParenthesesSubpatternOnceBegin: {
PatternTerm* term = op.m_term;
termMatchTargets.append(MatchTargets());
unsigned parenthesesFrameLocation = term->frameLocation;
const MacroAssembler::RegisterID indexTemporary = m_regs.regT0;
ASSERT(term->quantityMaxCount == 1);
// Upon entry to a Greedy quantified set of parenthese store the index.
// We'll use this for two purposes:
// - To indicate which iteration we are on of mathing the remainder of
// the expression after the parentheses - the first, including the
// match within the parentheses, or the second having skipped over them.
// - To check for empty matches, which must be rejected.
//
// At the head of a NonGreedy set of parentheses we'll immediately set the
// value on the stack to -1 (indicating a match skipping the subpattern),
// and plant a jump to the end. We'll also plant a label to backtrack to
// to reenter the subpattern later, with a store to set up index on the
// second iteration.
//
// FIXME: for capturing parens, could use the index in the capture array?
if (term->quantityType == QuantifierType::Greedy)
storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex());
else if (term->quantityType == QuantifierType::NonGreedy) {
storeToFrame(MacroAssembler::TrustedImm32(-1), parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex());
op.m_jumps.append(m_jit.jump());
op.m_reentry = m_jit.label();
storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex());
}
// If the parenthese are capturing, store the starting index value to the
// captures array, offsetting as necessary.
//
// FIXME: could avoid offsetting this value in JIT code, apply
// offsets only afterwards, at the point the results array is
// being accessed.
if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
unsigned inputOffset = op.m_checkedOffset - term->inputPosition;
if (term->quantityType == QuantifierType::FixedCount)
inputOffset += term->parentheses.disjunction->m_minimumSize;
if (inputOffset) {
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(inputOffset), indexTemporary);
setSubpatternStart(indexTemporary, term->parentheses.subpatternId);
} else
setSubpatternStart(m_regs.index, term->parentheses.subpatternId);
}
break;
}
case YarrOpCode::ParenthesesSubpatternOnceEnd: {
PatternTerm* term = op.m_term;
const MacroAssembler::RegisterID indexTemporary = m_regs.regT0;
ASSERT(term->quantityMaxCount == 1);
termMatchTargets.takeLast();
// If the nested alternative matched without consuming any characters, punt this back to the interpreter.
// FIXME: <https://bugs.webkit.org/show_bug.cgi?id=200786> Add ability for the YARR JIT to properly
// handle nested expressions that can match without consuming characters
if (term->quantityType != QuantifierType::FixedCount && !term->parentheses.disjunction->m_minimumSize)
m_abortExecution.append(m_jit.branch32(MacroAssembler::Equal, m_regs.index, frameAddress().withOffset(term->frameLocation * sizeof(void*))));
// If the parenthese are capturing, store the ending index value to the
// captures array, offsetting as necessary.
//
// FIXME: could avoid offsetting this value in JIT code, apply
// offsets only afterwards, at the point the results array is
// being accessed.
if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
auto subpatternId = term->parentheses.subpatternId;
unsigned inputOffset = op.m_checkedOffset - term->inputPosition;
if (inputOffset) {
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(inputOffset), indexTemporary);
setSubpatternEnd(indexTemporary, subpatternId);
} else
setSubpatternEnd(m_regs.index, subpatternId);
if (m_pattern.m_numDuplicateNamedCaptureGroups) {
if (auto duplicateNamedGroupId = m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId])
m_jit.store32(MacroAssembler::TrustedImm32(subpatternId), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
}
}
// If the parentheses are quantified Greedy then add a label to jump back
// to if we get a failed match from after the parentheses. For NonGreedy
// parentheses, link the jump from before the subpattern to here.
if (term->quantityType == QuantifierType::Greedy)
op.m_reentry = m_jit.label();
else if (term->quantityType == QuantifierType::NonGreedy) {
YarrOp& beginOp = m_ops[op.m_previousOp];
beginOp.m_jumps.link(&m_jit);
}
break;
}
// YarrOpCode::ParenthesesSubpatternTerminalBegin/End
case YarrOpCode::ParenthesesSubpatternTerminalBegin: {
PatternTerm* term = op.m_term;
ASSERT(!term->capture());
if (term->quantityType == QuantifierType::Greedy)
ASSERT(term->quantityMaxCount == quantifyInfinite);
if (term->quantityType == QuantifierType::FixedCount)
ASSERT(term->quantityMaxCount == 1);
termMatchTargets.append(MatchTargets());
// Upon entry set a label to loop back to.
op.m_reentry = m_jit.label();
// Store the start index of the current match; we need to reject zero
// length matches.
storeToFrame(m_regs.index, term->frameLocation + BackTrackInfoParenthesesTerminal::beginIndex());
break;
}
case YarrOpCode::ParenthesesSubpatternTerminalEnd: {
YarrOp& beginOp = m_ops[op.m_previousOp];
PatternTerm* term = op.m_term;
termMatchTargets.takeLast();
// If the nested alternative matched without consuming any characters, punt this back to the interpreter.
// FIXME: <https://bugs.webkit.org/show_bug.cgi?id=200786> Add ability for the YARR JIT to properly
// handle nested expressions that can match without consuming characters
if (term->quantityType != QuantifierType::FixedCount && !term->parentheses.disjunction->m_minimumSize)
m_abortExecution.append(m_jit.branch32(MacroAssembler::Equal, m_regs.index, frameAddress().withOffset(term->frameLocation * sizeof(void*))));
// We know that the match is non-zero, we can accept it and
// loop back up to the head of the subpattern.
m_jit.jump(beginOp.m_reentry);
// This is the entry point to jump to when we stop matching - we will
// do so once the subpattern cannot match any more.
op.m_reentry = m_jit.label();
break;
}
// YarrOpCode::ParenthesesSubpatternBegin/End
//
// These nodes support generic subpatterns.
case YarrOpCode::ParenthesesSubpatternBegin: {
termMatchTargets.append(MatchTargets());
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
PatternTerm* term = op.m_term;
unsigned parenthesesFrameLocation = term->frameLocation;
// Upon entry to a Greedy quantified set of parenthese store the index.
// We'll use this for two purposes:
// - To indicate which iteration we are on of mathing the remainder of
// the expression after the parentheses - the first, including the
// match within the parentheses, or the second having skipped over them.
// - To check for empty matches, which must be rejected.
//
// At the head of a NonGreedy set of parentheses we'll immediately set 'begin'
// in the backtrack info to -1 (indicating a match skipping the subpattern),
// and plant a jump to the end. We'll also plant a label to backtrack to
// to reenter the subpattern later, with a store to set 'begin' to current index
// on the second iteration.
//
// FIXME: for capturing parens, could use the index in the capture array?
if (term->quantityType == QuantifierType::Greedy || term->quantityType == QuantifierType::NonGreedy) {
storeToFrame(MacroAssembler::TrustedImm32(0), parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex());
storeToFrame(MacroAssembler::TrustedImmPtr(nullptr), parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex());
if (term->quantityType == QuantifierType::NonGreedy) {
storeToFrame(MacroAssembler::TrustedImm32(-1), parenthesesFrameLocation + BackTrackInfoParentheses::beginIndex());
op.m_jumps.append(m_jit.jump());
}
op.m_reentry = m_jit.label();
MacroAssembler::RegisterID currParenContextReg = m_regs.regT0;
MacroAssembler::RegisterID newParenContextReg = m_regs.regT1;
loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex(), currParenContextReg);
allocateParenContext(newParenContextReg);
m_jit.storePtr(currParenContextReg, MacroAssembler::Address(newParenContextReg, ParenContext::nextOffset()));
storeToFrame(newParenContextReg, parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex());
saveParenContext(newParenContextReg, m_regs.regT2, term->parentheses.subpatternId, term->parentheses.lastSubpatternId, parenthesesFrameLocation);
storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoParentheses::beginIndex());
}
// If the parenthese are capturing, store the starting index value to the
// captures array, offsetting as necessary.
//
// FIXME: could avoid offsetting this value in JIT code, apply
// offsets only afterwards, at the point the results array is
// being accessed.
if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
const MacroAssembler::RegisterID indexTemporary = m_regs.regT0;
unsigned inputOffset = op.m_checkedOffset - term->inputPosition;
if (term->quantityType == QuantifierType::FixedCount)
inputOffset += term->parentheses.disjunction->m_minimumSize;
if (inputOffset) {
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(inputOffset), indexTemporary);
setSubpatternStart(indexTemporary, term->parentheses.subpatternId);
} else
setSubpatternStart(m_regs.index, term->parentheses.subpatternId);
}
#else // !YARR_JIT_ALL_PARENS_EXPRESSIONS
RELEASE_ASSERT_NOT_REACHED();
#endif
break;
}
case YarrOpCode::ParenthesesSubpatternEnd: {
termMatchTargets.takeLast();
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
PatternTerm* term = op.m_term;
unsigned parenthesesFrameLocation = term->frameLocation;
// If the nested alternative matched without consuming any characters, punt this back to the interpreter.
// FIXME: <https://bugs.webkit.org/show_bug.cgi?id=200786> Add ability for the YARR JIT to properly
// handle nested expressions that can match without consuming characters
if (term->quantityType != QuantifierType::FixedCount && !term->parentheses.disjunction->m_minimumSize)
m_abortExecution.append(m_jit.branch32(MacroAssembler::Equal, m_regs.index, frameAddress().withOffset(parenthesesFrameLocation * sizeof(void*))));
const MacroAssembler::RegisterID countTemporary = m_regs.regT1;
YarrOp& beginOp = m_ops[op.m_previousOp];
loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex(), countTemporary);
m_jit.add32(MacroAssembler::TrustedImm32(1), countTemporary);
storeToFrame(countTemporary, parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex());
// If the parenthese are capturing, store the ending index value to the
// captures array, offsetting as necessary.
//
// FIXME: could avoid offsetting this value in JIT code, apply
// offsets only afterwards, at the point the results array is
// being accessed.
if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
const MacroAssembler::RegisterID indexTemporary = m_regs.regT0;
auto subpatternId = term->parentheses.subpatternId;
unsigned inputOffset = op.m_checkedOffset - term->inputPosition;
if (inputOffset) {
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(inputOffset), indexTemporary);
setSubpatternEnd(indexTemporary, subpatternId);
} else
setSubpatternEnd(m_regs.index, subpatternId);
if (m_pattern.m_numDuplicateNamedCaptureGroups) {
if (auto duplicateNamedGroupId = m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId])
m_jit.store32(MacroAssembler::TrustedImm32(subpatternId), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
}
}
// If the parentheses are quantified Greedy then add a label to jump back
// to if we get a failed match from after the parentheses. For NonGreedy
// parentheses, link the jump from before the subpattern to here.
if (term->quantityType == QuantifierType::Greedy) {
if (term->quantityMaxCount != quantifyInfinite)
m_jit.branch32(MacroAssembler::Below, countTemporary, MacroAssembler::Imm32(term->quantityMaxCount)).linkTo(beginOp.m_reentry, &m_jit);
else
m_jit.jump(beginOp.m_reentry);
op.m_reentry = m_jit.label();
} else if (term->quantityType == QuantifierType::NonGreedy) {
YarrOp& beginOp = m_ops[op.m_previousOp];
beginOp.m_jumps.link(&m_jit);
op.m_reentry = m_jit.label();
}
#else // !YARR_JIT_ALL_PARENS_EXPRESSIONS
RELEASE_ASSERT_NOT_REACHED();
#endif
break;
}
// YarrOpCode::ParentheticalAssertionBegin/End
case YarrOpCode::ParentheticalAssertionBegin: {
PatternTerm* term = op.m_term;
termMatchTargets.append(MatchTargets());
// Store the current index - assertions should not update index, so
// we will need to restore it upon a successful match.
unsigned parenthesesFrameLocation = term->frameLocation;
storeToFrame(m_regs.index, parenthesesFrameLocation + BackTrackInfoParentheticalAssertion::beginIndex());
if (op.m_checkAdjust)
m_jit.sub32(MacroAssembler::Imm32(op.m_checkAdjust), m_regs.index);
break;
}
case YarrOpCode::ParentheticalAssertionEnd: {
PatternTerm* term = op.m_term;
termMatchTargets.takeLast();
// Restore the input index value.
unsigned parenthesesFrameLocation = term->frameLocation;
loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheticalAssertion::beginIndex(), m_regs.index);
// If inverted, a successful match of the assertion must be treated
// as a failure, clear any nested captures and jump to backtracking.
if (term->invert()) {
if (m_compileMode == JITCompileMode::IncludeSubpatterns
&& term->containsAnyCaptures()) {
for (unsigned subpattern = term->parentheses.subpatternId; subpattern <= term->parentheses.lastSubpatternId; subpattern++)
clearSubpatternStart(subpattern);
}
op.m_jumps.append(m_jit.jump());
op.m_reentry = m_jit.label();
}
break;
}
case YarrOpCode::MatchFailed:
generateFailReturn();
break;
}
++opIndex;
} while (opIndex < m_ops.size());
termMatchTargets.takeLast();
}
void backtrack()
{
// Backwards generate the backtracking code.
size_t opIndex = m_ops.size();
ASSERT(opIndex);
do {
--opIndex;
if (m_disassembler)
m_disassembler->setForBacktrack(opIndex, m_jit.label());
YarrOp& op = m_ops[opIndex];
switch (op.m_op) {
case YarrOpCode::Term:
backtrackTerm(opIndex);
break;
// YarrOpCode::BodyAlternativeBegin/Next/End
//
// For each Begin/Next node representing an alternative, we need to decide what to do
// in two circumstances:
// - If we backtrack back into this node, from within the alternative.
// - If the input check at the head of the alternative fails (if this exists).
//
// We treat these two cases differently since in the former case we have slightly
// more information - since we are backtracking out of a prior alternative we know
// that at least enough input was available to run it. For example, given the regular
// expression /a|b/, if we backtrack out of the first alternative (a failed pattern
// character match of 'a'), then we need not perform an additional input availability
// check before running the second alternative.
//
// Backtracking required differs for the last alternative, which in the case of the
// repeating set of alternatives must loop. The code generated for the last alternative
// will also be used to handle all input check failures from any prior alternatives -
// these require similar functionality, in seeking the next available alternative for
// which there is sufficient input.
//
// Since backtracking of all other alternatives simply requires us to link backtracks
// to the reentry point for the subsequent alternative, we will only be generating any
// code when backtracking the last alternative.
case YarrOpCode::BodyAlternativeBegin:
case YarrOpCode::BodyAlternativeNext: {
PatternAlternative* alternative = op.m_alternative;
// Is this the last alternative? If not, then if we backtrack to this point we just
// need to jump to try to match the next alternative.
if (m_ops[op.m_nextOp].m_op != YarrOpCode::BodyAlternativeEnd) {
m_backtrackingState.linkTo(m_ops[op.m_nextOp].m_reentry, &m_jit);
break;
}
YarrOp& endOp = m_ops[op.m_nextOp];
ASSERT(endOp.m_op == YarrOpCode::BodyAlternativeEnd);
YarrOp* beginOp = &op;
while (beginOp->m_op != YarrOpCode::BodyAlternativeBegin) {
ASSERT(beginOp->m_op == YarrOpCode::BodyAlternativeNext);
beginOp = &m_ops[beginOp->m_previousOp];
}
bool onceThrough = endOp.m_nextOp == notFound;
MacroAssembler::JumpList lastStickyAlternativeFailures;
// First, generate code to handle cases where we backtrack out of an attempted match
// of the last alternative. If this is a 'once through' set of alternatives then we
// have nothing to do - link this straight through to the End.
if (onceThrough)
m_backtrackingState.linkTo(endOp.m_reentry, &m_jit);
else {
if (m_pattern.sticky()) {
// It is a sticky pattern and the last alternative failed, jump to the end.
m_backtrackingState.takeBacktracksToJumpList(lastStickyAlternativeFailures, &m_jit);
} else if (m_pattern.m_body->m_hasFixedSize
&& (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize)
&& (alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize == 1)) {
// If we don't need to move the input position, and the pattern has a fixed size
// (in which case we omit the store of the start index until the pattern has matched)
// then we can just link the backtrack out of the last alternative straight to the
// head of the first alternative.
m_backtrackingState.linkTo(beginOp->m_reentry, &m_jit);
} else {
// We need to generate a trampoline of code to execute before looping back
// around to the first alternative.
m_backtrackingState.link(&m_jit);
// No need to advance and retry for a sticky pattern. And it is already handled before this branch.
ASSERT(!m_pattern.sticky());
// If the pattern size is not fixed, then store the start index for use if we match.
if (!m_pattern.m_body->m_hasFixedSize) {
if (alternative->m_minimumSize == 1)
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
if (m_useFirstNonBMPCharacterOptimization) {
m_jit.add32(m_regs.firstCharacterAdditionalReadSize, m_regs.index, m_regs.regT0);
setMatchStart(m_regs.regT0);
} else
#endif
setMatchStart(m_regs.index);
else {
if (alternative->m_minimumSize)
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(alternative->m_minimumSize - 1), m_regs.regT0);
else
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index, m_regs.regT0);
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
if (m_useFirstNonBMPCharacterOptimization)
m_jit.add32(m_regs.firstCharacterAdditionalReadSize, m_regs.regT0);
#endif
setMatchStart(m_regs.regT0);
}
}
// Generate code to loop. Check whether the last alternative is longer than the
// first (e.g. /a|xy/ or /a|xyz/).
if (alternative->m_minimumSize > beginOp->m_alternative->m_minimumSize) {
// We want to loop, and increment input position. If the delta is 1, it is
// already correctly incremented, if more than one then decrement as appropriate.
unsigned delta = alternative->m_minimumSize - beginOp->m_alternative->m_minimumSize;
ASSERT(delta);
if (delta != 1)
m_jit.sub32(MacroAssembler::Imm32(delta - 1), m_regs.index);
m_jit.jump(beginOp->m_reentry);
} else {
// If the first alternative has minimum size 0xFFFFFFFFu, then there cannot
// be sufficent input available to handle this, so just fall through.
unsigned delta = beginOp->m_alternative->m_minimumSize - alternative->m_minimumSize;
if (delta != 0xFFFFFFFFu) {
// We need to check input because we are incrementing the input.
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
if (m_useFirstNonBMPCharacterOptimization)
m_jit.add32(m_regs.firstCharacterAdditionalReadSize, m_regs.index);
#endif
m_jit.add32(MacroAssembler::Imm32(delta + 1), m_regs.index);
checkInput().linkTo(beginOp->m_reentry, &m_jit);
}
}
}
}
// We can reach this point in the code in two ways:
// - Fallthrough from the code above (a repeating alternative backtracked out of its
// last alternative, and did not have sufficent input to run the first).
// - We will loop back up to the following label when a repeating alternative loops,
// following a failed input check.
//
// Either way, we have just failed the input check for the first alternative.
MacroAssembler::Label firstInputCheckFailed(&m_jit);
// Generate code to handle input check failures from alternatives except the last.
// prevOp is the alternative we're handling a bail out from (initially Begin), and
// nextOp is the alternative we will be attempting to reenter into.
//
// We will link input check failures from the forwards matching path back to the code
// that can handle them.
YarrOp* prevOp = beginOp;
YarrOp* nextOp = &m_ops[beginOp->m_nextOp];
while (nextOp->m_op != YarrOpCode::BodyAlternativeEnd) {
prevOp->m_jumps.link(&m_jit);
// We only get here if an input check fails, it is only worth checking again
// if the next alternative has a minimum size less than the last.
if (prevOp->m_alternative->m_minimumSize > nextOp->m_alternative->m_minimumSize) {
// FIXME: if we added an extra label to YarrOp, we could avoid needing to
// subtract delta back out, and reduce this code. Should performance test
// the benefit of this.
unsigned delta = prevOp->m_alternative->m_minimumSize - nextOp->m_alternative->m_minimumSize;
m_jit.sub32(MacroAssembler::Imm32(delta), m_regs.index);
MacroAssembler::Jump fail = jumpIfNoAvailableInput();
m_jit.add32(MacroAssembler::Imm32(delta), m_regs.index);
m_jit.jump(nextOp->m_reentry);
fail.link(&m_jit);
} else if (prevOp->m_alternative->m_minimumSize < nextOp->m_alternative->m_minimumSize)
m_jit.add32(MacroAssembler::Imm32(nextOp->m_alternative->m_minimumSize - prevOp->m_alternative->m_minimumSize), m_regs.index);
prevOp = nextOp;
nextOp = &m_ops[nextOp->m_nextOp];
}
// We fall through to here if there is insufficient input to run the last alternative.
// If there is insufficient input to run the last alternative, then for 'once through'
// alternatives we are done - just jump back up into the forwards matching path at the End.
if (onceThrough) {
op.m_jumps.linkTo(endOp.m_reentry, &m_jit);
m_jit.jump(endOp.m_reentry);
break;
}
// For repeating alternatives, link any input check failure from the last alternative to
// this point.
op.m_jumps.link(&m_jit);
bool needsToUpdateMatchStart = !m_pattern.m_body->m_hasFixedSize;
// Check for cases where input position is already incremented by 1 for the last
// alternative (this is particularly useful where the minimum size of the body
// disjunction is 0, e.g. /a*|b/).
if (needsToUpdateMatchStart && alternative->m_minimumSize == 1) {
// index is already incremented by 1, so just store it now!
setMatchStart(m_regs.index);
needsToUpdateMatchStart = false;
}
if (!m_pattern.sticky()) {
// Check whether there is sufficient input to loop. Increment the input position by
// one, and check. Also add in the minimum disjunction size before checking - there
// is no point in looping if we're just going to fail all the input checks around
// the next iteration.
ASSERT(alternative->m_minimumSize >= m_pattern.m_body->m_minimumSize);
if (alternative->m_minimumSize == m_pattern.m_body->m_minimumSize) {
// If the last alternative had the same minimum size as the disjunction,
// just simply increment input pos by 1, no adjustment based on minimum size.
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
if (m_useFirstNonBMPCharacterOptimization)
m_jit.add32(m_regs.firstCharacterAdditionalReadSize, m_regs.index);
#endif
m_jit.add32(MacroAssembler::TrustedImm32(1), m_regs.index);
} else {
// If the minumum for the last alternative was one greater than than that
// for the disjunction, we're already progressed by 1, nothing to do!
unsigned delta = (alternative->m_minimumSize - m_pattern.m_body->m_minimumSize) - 1;
if (delta)
m_jit.sub32(MacroAssembler::Imm32(delta), m_regs.index);
}
MacroAssembler::Jump matchFailed = jumpIfNoAvailableInput();
if (needsToUpdateMatchStart) {
if (!m_pattern.m_body->m_minimumSize)
setMatchStart(m_regs.index);
else {
m_jit.sub32(m_regs.index, MacroAssembler::Imm32(m_pattern.m_body->m_minimumSize), m_regs.regT0);
setMatchStart(m_regs.regT0);
}
}
// Calculate how much more input the first alternative requires than the minimum
// for the body as a whole. If no more is needed then we dont need an additional
// input check here - jump straight back up to the start of the first alternative.
if (beginOp->m_alternative->m_minimumSize == m_pattern.m_body->m_minimumSize)
m_jit.jump(beginOp->m_reentry);
else {
if (beginOp->m_alternative->m_minimumSize > m_pattern.m_body->m_minimumSize)
m_jit.add32(MacroAssembler::Imm32(beginOp->m_alternative->m_minimumSize - m_pattern.m_body->m_minimumSize), m_regs.index);
else
m_jit.sub32(MacroAssembler::Imm32(m_pattern.m_body->m_minimumSize - beginOp->m_alternative->m_minimumSize), m_regs.index);
checkInput().linkTo(beginOp->m_reentry, &m_jit);
m_jit.jump(firstInputCheckFailed);
}
// We jump to here if we iterate to the point that there is insufficient input to
// run any matches, and need to return a failure state from JIT code.
matchFailed.link(&m_jit);
}
lastStickyAlternativeFailures.link(&m_jit);
generateFailReturn();
break;
}
case YarrOpCode::BodyAlternativeEnd: {
// We should never backtrack back into a body disjunction.
ASSERT(m_backtrackingState.isEmpty());
break;
}
// YarrOpCode::SimpleNestedAlternativeBegin/Next/End
// YarrOpCode::StringListAlternativeBegin/Next/End
// YarrOpCode::NestedAlternativeBegin/Next/End
//
// Generate code for when we backtrack back out of an alternative into
// a Begin or Next node, or when the entry input count check fails. If
// there are more alternatives we need to jump to the next alternative,
// if not we backtrack back out of the current set of parentheses.
//
// In the case of non-simple nested assertions we need to also link the
// 'return address' appropriately to backtrack back out into the correct
// alternative.
case YarrOpCode::SimpleNestedAlternativeBegin:
case YarrOpCode::SimpleNestedAlternativeNext:
case YarrOpCode::StringListAlternativeBegin:
case YarrOpCode::StringListAlternativeNext:
case YarrOpCode::NestedAlternativeBegin:
case YarrOpCode::NestedAlternativeNext: {
YarrOp& nextOp = m_ops[op.m_nextOp];
bool isBegin = op.m_previousOp == notFound;
bool isLastAlternative = nextOp.m_nextOp == notFound;
ASSERT(isBegin == (op.m_op == YarrOpCode::SimpleNestedAlternativeBegin || op.m_op == YarrOpCode::StringListAlternativeBegin || op.m_op == YarrOpCode::NestedAlternativeBegin));
ASSERT(isLastAlternative == (nextOp.m_op == YarrOpCode::SimpleNestedAlternativeEnd || nextOp.m_op == YarrOpCode::StringListAlternativeEnd || nextOp.m_op == YarrOpCode::NestedAlternativeEnd));
// Treat an input check failure the same as a failed match.
m_backtrackingState.append(op.m_jumps);
// Set the backtracks to jump to the appropriate place. We may need
// to link the backtracks in one of three different way depending on
// the type of alternative we are dealing with:
// - A single alternative, with no siblings.
// - The last alternative of a set of two or more.
// - An alternative other than the last of a set of two or more.
//
// In the case of a single alternative on its own, we don't need to
// jump anywhere - if the alternative fails to match we can just
// continue to backtrack out of the parentheses without jumping.
//
// In the case of the last alternative in a set of more than one, we
// need to jump to return back out to the beginning. We'll do so by
// adding a jump to the End node's m_jumps list, and linking this
// when we come to generate the Begin node. For alternatives other
// than the last, we need to jump to the next alternative.
//
// If the alternative had adjusted the input position we must link
// backtracking to here, correct, and then jump on. If not we can
// link the backtracks directly to their destination.
if (op.m_checkAdjust) {
if (!m_backtrackingState.isEmpty()) {
// Handle the cases where we need to link the backtracks here.
m_backtrackingState.link(&m_jit);
m_jit.sub32(MacroAssembler::Imm32(op.m_checkAdjust), m_regs.index);
if (!isLastAlternative) {
// An alternative that is not the last should jump to its successor.
m_jit.jump(nextOp.m_reentry);
} else if (!isBegin) {
// The last of more than one alternatives must jump back to the beginning.
nextOp.m_jumps.append(m_jit.jump());
} else {
// A single alternative on its own can fall through.
m_backtrackingState.fallthrough();
}
}
} else {
// Handle the cases where we can link the backtracks directly to their destinations.
if (!isLastAlternative) {
// An alternative that is not the last should jump to its successor.
m_backtrackingState.linkTo(nextOp.m_reentry, &m_jit);
} else if (!isBegin) {
// The last of more than one alternatives must jump back to the beginning.
m_backtrackingState.takeBacktracksToJumpList(nextOp.m_jumps, &m_jit);
}
// In the case of a single alternative on its own do nothing - it can fall through.
}
// If there is a backtrack jump from a zero length match link it here.
if (op.m_zeroLengthMatch.isSet())
m_backtrackingState.append(op.m_zeroLengthMatch);
// At this point we've handled the backtracking back into this node.
// Now link any backtracks that need to jump to here.
// For non-simple alternatives, link the alternative's 'return address'
// so that we backtrack back out into the previous alternative.
if (op.m_op == YarrOpCode::NestedAlternativeNext)
m_backtrackingState.append(op.m_returnAddress);
// If there is more than one alternative, then the last alternative will
// have planted a jump to be linked to the end. This jump was added to the
// End node's m_jumps list. If we are back at the beginning, link it here.
if (isBegin) {
YarrOp* endOp = &m_ops[op.m_nextOp];
while (endOp->m_nextOp != notFound) {
ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeNext || endOp->m_op == YarrOpCode::StringListAlternativeNext || endOp->m_op == YarrOpCode::NestedAlternativeNext);
endOp = &m_ops[endOp->m_nextOp];
}
ASSERT(endOp->m_op == YarrOpCode::SimpleNestedAlternativeEnd || endOp->m_op == YarrOpCode::StringListAlternativeEnd || endOp->m_op == YarrOpCode::NestedAlternativeEnd);
m_backtrackingState.append(endOp->m_jumps);
}
break;
}
case YarrOpCode::SimpleNestedAlternativeEnd:
case YarrOpCode::StringListAlternativeEnd:
case YarrOpCode::NestedAlternativeEnd: {
PatternTerm* term = op.m_term;
// If there is a backtrack jump from a zero length match link it here.
if (op.m_zeroLengthMatch.isSet())
m_backtrackingState.append(op.m_zeroLengthMatch);
// If we backtrack into the end of a simple subpattern do nothing;
// just continue through into the last alternative. If we backtrack
// into the end of a non-simple set of alterntives we need to jump
// to the backtracking return address set up during generation.
if (op.m_op == YarrOpCode::NestedAlternativeEnd) {
m_backtrackingState.link(&m_jit);
// Plant a jump to the return address.
unsigned parenthesesFrameLocation = term->frameLocation;
loadFromFrameAndJump(parenthesesFrameLocation + BackTrackInfoParentheses::returnAddressIndex());
// Link the DataLabelPtr associated with the end of the last
// alternative to this point.
m_backtrackingState.append(op.m_returnAddress);
}
break;
}
// YarrOpCode::ParenthesesSubpatternOnceBegin/End
//
// When we are backtracking back out of a capturing subpattern we need
// to clear the start index in the matches output array, to record that
// this subpattern has not been captured.
//
// When backtracking back out of a Greedy quantified subpattern we need
// to catch this, and try running the remainder of the alternative after
// the subpattern again, skipping the parentheses.
//
// Upon backtracking back into a quantified set of parentheses we need to
// check whether we were currently skipping the subpattern. If not, we
// can backtrack into them, if we were we need to either backtrack back
// out of the start of the parentheses, or jump back to the forwards
// matching start, depending of whether the match is Greedy or NonGreedy.
case YarrOpCode::ParenthesesSubpatternOnceBegin: {
PatternTerm* term = op.m_term;
ASSERT(term->quantityMaxCount == 1);
// We only need to backtrack to this point if capturing or greedy.
if ((term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) || term->quantityType == QuantifierType::Greedy) {
m_backtrackingState.link(&m_jit);
// If capturing, clear the capture (we only need to reset start).
if (term->capture() && m_compileMode == JITCompileMode::IncludeSubpatterns) {
auto subpatternId = term->parentheses.subpatternId;
clearSubpatternStart(subpatternId);
if (m_pattern.m_numDuplicateNamedCaptureGroups) {
if (auto duplicateNamedGroupId = m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId])
m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
}
}
// If Greedy, jump to the end.
if (term->quantityType == QuantifierType::Greedy) {
// Clear the flag in the stackframe indicating we ran through the subpattern.
unsigned parenthesesFrameLocation = term->frameLocation;
storeToFrame(MacroAssembler::TrustedImm32(-1), parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex());
// Clear out any nested captures.
if (m_compileMode == JITCompileMode::IncludeSubpatterns && term->containsAnyCaptures()) {
unsigned firstPatternId = term->parentheses.subpatternId;
if (term->capture())
firstPatternId++;
for (unsigned subpattern = firstPatternId; subpattern <= term->parentheses.lastSubpatternId; subpattern++) {
clearSubpatternStart(subpattern);
if (m_pattern.m_numDuplicateNamedCaptureGroups) {
if (auto duplicateNamedGroupId = m_pattern.m_duplicateNamedGroupForSubpatternId[subpattern])
m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(int))));
}
}
}
// Jump to after the parentheses, skipping the subpattern.
m_jit.jump(m_ops[op.m_nextOp].m_reentry);
// A backtrack from after the parentheses, when skipping the subpattern,
// will jump back to here.
op.m_jumps.link(&m_jit);
}
m_backtrackingState.fallthrough();
}
break;
}
case YarrOpCode::ParenthesesSubpatternOnceEnd: {
PatternTerm* term = op.m_term;
if (term->quantityType != QuantifierType::FixedCount) {
m_backtrackingState.link(&m_jit);
// Check whether we should backtrack back into the parentheses, or if we
// are currently in a state where we had skipped over the subpattern
// (in which case the flag value on the stack will be -1).
unsigned parenthesesFrameLocation = term->frameLocation;
MacroAssembler::Jump hadSkipped = m_jit.branch32(MacroAssembler::Equal, frameAddress().withOffset((parenthesesFrameLocation + BackTrackInfoParenthesesOnce::beginIndex()) * sizeof(void*)), MacroAssembler::TrustedImm32(-1));
if (term->quantityType == QuantifierType::Greedy) {
// For Greedy parentheses, we skip after having already tried going
// through the subpattern, so if we get here we're done.
YarrOp& beginOp = m_ops[op.m_previousOp];
beginOp.m_jumps.append(hadSkipped);
} else {
// For NonGreedy parentheses, we try skipping the subpattern first,
// so if we get here we need to try running through the subpattern
// next. Jump back to the start of the parentheses in the forwards
// matching path.
ASSERT(term->quantityType == QuantifierType::NonGreedy);
YarrOp& beginOp = m_ops[op.m_previousOp];
hadSkipped.linkTo(beginOp.m_reentry, &m_jit);
}
m_backtrackingState.fallthrough();
}
m_backtrackingState.append(op.m_jumps);
break;
}
// YarrOpCode::ParenthesesSubpatternTerminalBegin/End
//
// Terminal subpatterns will always match - there is nothing after them to
// force a backtrack, and they have a minimum count of 0, and as such will
// always produce an acceptable result.
case YarrOpCode::ParenthesesSubpatternTerminalBegin: {
// We will backtrack to this point once the subpattern cannot match any
// more. Since no match is accepted as a successful match (we are Greedy
// quantified with a minimum of zero) jump back to the forwards matching
// path at the end.
YarrOp& endOp = m_ops[op.m_nextOp];
m_backtrackingState.linkTo(endOp.m_reentry, &m_jit);
break;
}
case YarrOpCode::ParenthesesSubpatternTerminalEnd:
// We should never be backtracking to here (hence the 'terminal' in the name).
ASSERT(m_backtrackingState.isEmpty());
m_backtrackingState.append(op.m_jumps);
break;
// YarrOpCode::ParenthesesSubpatternBegin/End
//
// When we are backtracking back out of a capturing subpattern we need
// to clear the start index in the matches output array, to record that
// this subpattern has not been captured.
//
// When backtracking back out of a Greedy quantified subpattern we need
// to catch this, and try running the remainder of the alternative after
// the subpattern again, skipping the parentheses.
//
// Upon backtracking back into a quantified set of parentheses we need to
// check whether we were currently skipping the subpattern. If not, we
// can backtrack into them, if we were we need to either backtrack back
// out of the start of the parentheses, or jump back to the forwards
// matching start, depending of whether the match is Greedy or NonGreedy.
case YarrOpCode::ParenthesesSubpatternBegin: {
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
PatternTerm* term = op.m_term;
unsigned parenthesesFrameLocation = term->frameLocation;
if (term->quantityType == QuantifierType::Greedy || term->quantityType == QuantifierType::NonGreedy) {
m_backtrackingState.link(&m_jit);
MacroAssembler::RegisterID currParenContextReg = m_regs.regT0;
MacroAssembler::RegisterID newParenContextReg = m_regs.regT1;
loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex(), currParenContextReg);
restoreParenContext(currParenContextReg, m_regs.regT2, term->parentheses.subpatternId, term->parentheses.lastSubpatternId, parenthesesFrameLocation);
m_jit.loadPtr(MacroAssembler::Address(currParenContextReg, ParenContext::nextOffset()), newParenContextReg);
freeParenContext(currParenContextReg);
storeToFrame(newParenContextReg, parenthesesFrameLocation + BackTrackInfoParentheses::parenContextHeadIndex());
const MacroAssembler::RegisterID countTemporary = m_regs.regT0;
loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex(), countTemporary);
MacroAssembler::Jump zeroLengthMatch = m_jit.branchTest32(MacroAssembler::Zero, countTemporary);
m_jit.sub32(MacroAssembler::TrustedImm32(1), countTemporary);
storeToFrame(countTemporary, parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex());
m_jit.jump(m_ops[op.m_nextOp].m_reentry);
zeroLengthMatch.link(&m_jit);
// Clear the flag in the stackframe indicating we didn't run through the subpattern.
storeToFrame(MacroAssembler::TrustedImm32(-1), parenthesesFrameLocation + BackTrackInfoParentheses::beginIndex());
if (term->quantityType == QuantifierType::Greedy)
m_jit.jump(m_ops[op.m_nextOp].m_reentry);
// If Greedy, jump to the end.
if (term->quantityType == QuantifierType::Greedy) {
// A backtrack from after the parentheses, when skipping the subpattern,
// will jump back to here.
op.m_jumps.link(&m_jit);
}
m_backtrackingState.fallthrough();
}
#else // !YARR_JIT_ALL_PARENS_EXPRESSIONS
RELEASE_ASSERT_NOT_REACHED();
#endif
break;
}
case YarrOpCode::ParenthesesSubpatternEnd: {
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
PatternTerm* term = op.m_term;
if (term->quantityType != QuantifierType::FixedCount) {
m_backtrackingState.link(&m_jit);
unsigned parenthesesFrameLocation = term->frameLocation;
if (term->quantityType == QuantifierType::Greedy) {
// Check whether we should backtrack back into the parentheses, or if we
// are currently in a state where we had skipped over the subpattern
// (in which case the flag value on the stack will be -1).
MacroAssembler::Jump hadSkipped = m_jit.branch32(MacroAssembler::Equal, frameAddress().withOffset((parenthesesFrameLocation + BackTrackInfoParentheses::beginIndex()) * sizeof(void*)), MacroAssembler::TrustedImm32(-1));
// For Greedy parentheses, we skip after having already tried going
// through the subpattern, so if we get here we're done.
YarrOp& beginOp = m_ops[op.m_previousOp];
beginOp.m_jumps.append(hadSkipped);
} else {
// For NonGreedy parentheses, we try skipping the subpattern first,
// so if we get here we need to try running through the subpattern
// next. Jump back to the start of the parentheses in the forwards
// matching path.
ASSERT(term->quantityType == QuantifierType::NonGreedy);
const MacroAssembler::RegisterID beginTemporary = m_regs.regT0;
const MacroAssembler::RegisterID countTemporary = m_regs.regT1;
YarrOp& beginOp = m_ops[op.m_previousOp];
loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::beginIndex(), beginTemporary);
m_jit.branch32(MacroAssembler::Equal, beginTemporary, MacroAssembler::TrustedImm32(-1)).linkTo(beginOp.m_reentry, &m_jit);
MacroAssembler::JumpList exceededMatchLimit;
if (term->quantityMaxCount != quantifyInfinite) {
loadFromFrame(parenthesesFrameLocation + BackTrackInfoParentheses::matchAmountIndex(), countTemporary);
exceededMatchLimit.append(m_jit.branch32(MacroAssembler::AboveOrEqual, countTemporary, MacroAssembler::Imm32(term->quantityMaxCount)));
}
m_jit.branch32(MacroAssembler::Above, m_regs.index, beginTemporary).linkTo(beginOp.m_reentry, &m_jit);
exceededMatchLimit.link(&m_jit);
}
m_backtrackingState.fallthrough();
}
m_backtrackingState.append(op.m_jumps);
#else // !YARR_JIT_ALL_PARENS_EXPRESSIONS
RELEASE_ASSERT_NOT_REACHED();
#endif
break;
}
// YarrOpCode::ParentheticalAssertionBegin/End
case YarrOpCode::ParentheticalAssertionBegin: {
PatternTerm* term = op.m_term;
YarrOp& endOp = m_ops[op.m_nextOp];
// We need to handle the backtracks upon backtracking back out
// of a parenthetical assertion if either we need to correct
// the input index, or the assertion was inverted.
if (op.m_checkAdjust || term->invert()) {
m_backtrackingState.link(&m_jit);
if (op.m_checkAdjust)
m_jit.add32(MacroAssembler::Imm32(op.m_checkAdjust), m_regs.index);
// In an inverted assertion failure to match the subpattern
// is treated as a successful match - jump to the end of the
// subpattern. We already have adjusted the input position
// back to that before the assertion, which is correct.
if (term->invert())
m_jit.jump(endOp.m_reentry);
m_backtrackingState.fallthrough();
}
// The End node's jump list will contain any backtracks into
// the end of the assertion. Also, if inverted, we will have
// added the failure caused by a successful match to this.
m_backtrackingState.append(endOp.m_jumps);
break;
}
case YarrOpCode::ParentheticalAssertionEnd: {
// Never backtrack into an assertion; later failures bail to before the begin.
m_backtrackingState.takeBacktracksToJumpList(op.m_jumps, &m_jit);
break;
}
case YarrOpCode::MatchFailed:
break;
}
} while (opIndex);
}
// Compilation methods:
// ====================
// opCompileParenthesesSubpattern
// Emits ops for a subpattern (set of parentheses). These consist
// of a set of alternatives wrapped in an outer set of nodes for
// the parentheses.
// Supported types of parentheses are 'Once' (quantityMaxCount == 1),
// 'Terminal' (non-capturing parentheses quantified as greedy
// and infinite), and 0 based greedy / non-greedy quantified parentheses.
// Alternatives will use the 'Simple' set of ops if either the
// subpattern is terminal (in which case we will never need to
// backtrack), or if the subpattern only contains one alternative.
void opCompileParenthesesSubpattern(Checked<unsigned> checkedOffset, PatternTerm* term)
{
YarrOpCode parenthesesBeginOpCode;
YarrOpCode parenthesesEndOpCode;
YarrOpCode alternativeBeginOpCode = YarrOpCode::SimpleNestedAlternativeBegin;
YarrOpCode alternativeNextOpCode = YarrOpCode::SimpleNestedAlternativeNext;
YarrOpCode alternativeEndOpCode = YarrOpCode::SimpleNestedAlternativeEnd;
if (!isSafeToRecurse()) [[unlikely]] {
m_failureReason = JITFailureReason::ParenthesisNestedTooDeep;
return;
}
// We can currently only compile quantity 1 subpatterns that are
// not copies. We generate a copy in the case of a range quantifier,
// e.g. /(?:x){3,9}/, or /(?:x)+/ (These are effectively expanded to
// /(?:x){3,3}(?:x){0,6}/ and /(?:x)(?:x)*/ repectively). The problem
// comes where the subpattern is capturing, in which case we would
// need to restore the capture from the first subpattern upon a
// failure in the second.
if (term->quantityMinCount && term->quantityMinCount != term->quantityMaxCount) {
m_failureReason = JITFailureReason::VariableCountedParenthesisWithNonZeroMinimum;
return;
}
if (term->quantityMaxCount == 1 && !term->parentheses.isCopy) {
// Select the 'Once' nodes.
parenthesesBeginOpCode = YarrOpCode::ParenthesesSubpatternOnceBegin;
parenthesesEndOpCode = YarrOpCode::ParenthesesSubpatternOnceEnd;
if (term->parentheses.isStringList) {
// This is an anchored non-capturing string list parenthesis that can't backtrack, we use the 'string list' nodes.
// We may need to reorder these if we have an EOL after.
if (term->parentheses.isEOLStringList) {
PatternDisjunction* nestedDisjunction = term->parentheses.disjunction;
nestedDisjunction->m_alternatives.last()->m_isLastAlternative = false;
std::ranges::sort(nestedDisjunction->m_alternatives, [](auto& l, auto& r) {
return l->m_terms.size() > r->m_terms.size();
});
nestedDisjunction->m_alternatives.last()->m_isLastAlternative = true;
}
alternativeBeginOpCode = YarrOpCode::StringListAlternativeBegin;
alternativeNextOpCode = YarrOpCode::StringListAlternativeNext;
alternativeEndOpCode = YarrOpCode::StringListAlternativeEnd;
} else if (term->parentheses.disjunction->m_alternatives.size() != 1) {
// Otherwise, check if there is more than one alternative. If so, we cannot use the 'simple' nodes.
alternativeBeginOpCode = YarrOpCode::NestedAlternativeBegin;
alternativeNextOpCode = YarrOpCode::NestedAlternativeNext;
alternativeEndOpCode = YarrOpCode::NestedAlternativeEnd;
}
} else if (term->parentheses.isTerminal) {
// Select the 'Terminal' nodes.
parenthesesBeginOpCode = YarrOpCode::ParenthesesSubpatternTerminalBegin;
parenthesesEndOpCode = YarrOpCode::ParenthesesSubpatternTerminalEnd;
} else {
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
// We only handle generic parenthesis with non-fixed counts.
if (term->quantityType == QuantifierType::FixedCount) {
// This subpattern is not supported by the JIT.
m_failureReason = JITFailureReason::FixedCountParenthesizedSubpattern;
return;
}
m_containsNestedSubpatterns = true;
// Select the 'Generic' nodes.
parenthesesBeginOpCode = YarrOpCode::ParenthesesSubpatternBegin;
parenthesesEndOpCode = YarrOpCode::ParenthesesSubpatternEnd;
// If there is more than one alternative we cannot use the 'simple' nodes.
if (term->parentheses.disjunction->m_alternatives.size() != 1) {
alternativeBeginOpCode = YarrOpCode::NestedAlternativeBegin;
alternativeNextOpCode = YarrOpCode::NestedAlternativeNext;
alternativeEndOpCode = YarrOpCode::NestedAlternativeEnd;
}
#else
// This subpattern is not supported by the JIT.
m_failureReason = JITFailureReason::ParenthesizedSubpattern;
return;
#endif
}
size_t parenBegin = m_ops.size();
m_ops.append(parenthesesBeginOpCode);
m_ops.append(alternativeBeginOpCode);
m_ops.last().m_previousOp = notFound;
m_ops.last().m_term = term;
PatternDisjunction* disjunction = term->parentheses.disjunction;
auto& alternatives = disjunction->m_alternatives;
for (unsigned i = 0; i < alternatives.size(); ++i) {
size_t lastOpIndex = m_ops.size() - 1;
PatternAlternative* nestedAlternative = alternatives[i].get();
{
// Calculate how much input we need to check for, and if non-zero check.
YarrOp& lastOp = m_ops[lastOpIndex];
lastOp.m_checkAdjust = nestedAlternative->m_minimumSize;
if ((term->quantityType == QuantifierType::FixedCount) && (term->type != PatternTerm::Type::ParentheticalAssertion))
lastOp.m_checkAdjust -= disjunction->m_minimumSize;
Checked<unsigned, RecordOverflow> checkedOffsetResult(checkedOffset);
checkedOffsetResult += lastOp.m_checkAdjust;
if (checkedOffsetResult.hasOverflowed()) [[unlikely]] {
m_failureReason = JITFailureReason::OffsetTooLarge;
return;
}
lastOp.m_checkedOffset = checkedOffsetResult;
}
opCompileAlternative(m_ops[lastOpIndex].m_checkedOffset, nestedAlternative);
size_t thisOpIndex = m_ops.size();
m_ops.append(YarrOp(alternativeNextOpCode));
YarrOp& lastOp = m_ops[lastOpIndex];
YarrOp& thisOp = m_ops[thisOpIndex];
lastOp.m_alternative = nestedAlternative;
lastOp.m_nextOp = thisOpIndex;
thisOp.m_previousOp = lastOpIndex;
thisOp.m_term = term;
}
YarrOp& lastOp = m_ops.last();
ASSERT(lastOp.m_op == alternativeNextOpCode);
lastOp.m_op = alternativeEndOpCode;
lastOp.m_alternative = nullptr;
lastOp.m_nextOp = notFound;
lastOp.m_checkedOffset = checkedOffset;
size_t parenEnd = m_ops.size();
m_ops.append(parenthesesEndOpCode);
m_ops[parenBegin].m_term = term;
m_ops[parenBegin].m_previousOp = notFound;
m_ops[parenBegin].m_nextOp = parenEnd;
m_ops[parenBegin].m_checkedOffset = checkedOffset;
m_ops[parenEnd].m_term = term;
m_ops[parenEnd].m_previousOp = parenBegin;
m_ops[parenEnd].m_nextOp = notFound;
m_ops[parenEnd].m_checkedOffset = checkedOffset;
}
// opCompileParentheticalAssertion
// Emits ops for a parenthetical assertion. These consist of an
// YarrOpCode::SimpleNestedAlternativeBegin/Next/End set of nodes wrapping
// the alternatives, with these wrapped by an outer pair of
// YarrOpCode::ParentheticalAssertionBegin/End nodes.
// We can always use the OpSimpleNestedAlternative nodes in the
// case of parenthetical assertions since these only ever match
// once, and will never backtrack back into the assertion.
void opCompileParentheticalAssertion(Checked<unsigned> checkedOffset, PatternTerm* term)
{
if (!isSafeToRecurse()) [[unlikely]] {
m_failureReason = JITFailureReason::ParenthesisNestedTooDeep;
return;
}
auto originalCheckedOffset = checkedOffset;
size_t parenBegin = m_ops.size();
m_ops.append(YarrOpCode::ParentheticalAssertionBegin);
m_ops.last().m_checkAdjust = checkedOffset - term->inputPosition;
checkedOffset -= m_ops.last().m_checkAdjust;
m_ops.last().m_checkedOffset = checkedOffset;
m_ops.append(YarrOpCode::SimpleNestedAlternativeBegin);
m_ops.last().m_previousOp = notFound;
m_ops.last().m_term = term;
PatternDisjunction* disjunction = term->parentheses.disjunction;
auto& alternatives = disjunction->m_alternatives;
for (unsigned i = 0; i < alternatives.size(); ++i) {
size_t lastOpIndex = m_ops.size() - 1;
PatternAlternative* nestedAlternative = alternatives[i].get();
{
// Calculate how much input we need to check for, and if non-zero check.
YarrOp& lastOp = m_ops[lastOpIndex];
lastOp.m_checkAdjust = nestedAlternative->m_minimumSize;
if ((term->quantityType == QuantifierType::FixedCount) && (term->type != PatternTerm::Type::ParentheticalAssertion))
lastOp.m_checkAdjust -= disjunction->m_minimumSize;
lastOp.m_checkedOffset = checkedOffset + lastOp.m_checkAdjust;
}
opCompileAlternative(m_ops[lastOpIndex].m_checkedOffset, nestedAlternative);
size_t thisOpIndex = m_ops.size();
m_ops.append(YarrOp(YarrOpCode::SimpleNestedAlternativeNext));
YarrOp& lastOp = m_ops[lastOpIndex];
YarrOp& thisOp = m_ops[thisOpIndex];
lastOp.m_alternative = nestedAlternative;
lastOp.m_nextOp = thisOpIndex;
thisOp.m_previousOp = lastOpIndex;
thisOp.m_term = term;
}
YarrOp& lastOp = m_ops.last();
ASSERT(lastOp.m_op == YarrOpCode::SimpleNestedAlternativeNext);
lastOp.m_op = YarrOpCode::SimpleNestedAlternativeEnd;
lastOp.m_alternative = nullptr;
lastOp.m_nextOp = notFound;
lastOp.m_checkedOffset = checkedOffset;
size_t parenEnd = m_ops.size();
m_ops.append(YarrOpCode::ParentheticalAssertionEnd);
m_ops[parenBegin].m_term = term;
m_ops[parenBegin].m_previousOp = notFound;
m_ops[parenBegin].m_nextOp = parenEnd;
m_ops[parenEnd].m_term = term;
m_ops[parenEnd].m_previousOp = parenBegin;
m_ops[parenEnd].m_nextOp = notFound;
m_ops[parenEnd].m_checkedOffset = originalCheckedOffset;
}
// opCompileAlternative
// Called to emit nodes for all terms in an alternative.
void opCompileAlternative(Checked<unsigned> checkedOffset, PatternAlternative* alternative)
{
optimizeAlternative(alternative);
for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
PatternTerm* term = &alternative->m_terms[i];
switch (term->type) {
case PatternTerm::Type::ParenthesesSubpattern:
opCompileParenthesesSubpattern(checkedOffset, term);
break;
case PatternTerm::Type::ParentheticalAssertion:
opCompileParentheticalAssertion(checkedOffset, term);
break;
default:
m_ops.append(term);
m_ops.last().m_checkedOffset = checkedOffset;
}
}
}
// opCompileBody
// This method compiles the body disjunction of the regular expression.
// The body consists of two sets of alternatives - zero or more 'once
// through' (BOL anchored) alternatives, followed by zero or more
// repeated alternatives.
// For each of these two sets of alteratives, if not empty they will be
// wrapped in a set of YarrOpCode::BodyAlternativeBegin/Next/End nodes (with the
// 'begin' node referencing the first alternative, and 'next' nodes
// referencing any further alternatives. The begin/next/end nodes are
// linked together in a doubly linked list. In the case of repeating
// alternatives, the end node is also linked back to the beginning.
// If no repeating alternatives exist, then a YarrOpCode::MatchFailed node exists
// to return the failing result.
void opCompileBody(PatternDisjunction* disjunction)
{
if (!isSafeToRecurse()) [[unlikely]] {
m_failureReason = JITFailureReason::ParenthesisNestedTooDeep;
return;
}
auto& alternatives = disjunction->m_alternatives;
size_t currentAlternativeIndex = 0;
// Emit the 'once through' alternatives.
if (alternatives.size() && alternatives[0]->onceThrough()) {
m_ops.append(YarrOp(YarrOpCode::BodyAlternativeBegin));
m_ops.last().m_previousOp = notFound;
do {
size_t lastOpIndex = m_ops.size() - 1;
PatternAlternative* alternative = alternatives[currentAlternativeIndex].get();
m_ops[lastOpIndex].m_checkedOffset = alternative->m_minimumSize;
opCompileAlternative(alternative->m_minimumSize, alternative);
size_t thisOpIndex = m_ops.size();
m_ops.append(YarrOp(YarrOpCode::BodyAlternativeNext));
YarrOp& lastOp = m_ops[lastOpIndex];
YarrOp& thisOp = m_ops[thisOpIndex];
lastOp.m_alternative = alternative;
lastOp.m_nextOp = thisOpIndex;
thisOp.m_previousOp = lastOpIndex;
++currentAlternativeIndex;
} while (currentAlternativeIndex < alternatives.size() && alternatives[currentAlternativeIndex]->onceThrough());
YarrOp& lastOp = m_ops.last();
ASSERT(lastOp.m_op == YarrOpCode::BodyAlternativeNext);
lastOp.m_op = YarrOpCode::BodyAlternativeEnd;
lastOp.m_alternative = nullptr;
lastOp.m_nextOp = notFound;
lastOp.m_checkedOffset = 0;
}
if (currentAlternativeIndex == alternatives.size()) {
m_ops.append(YarrOp(YarrOpCode::MatchFailed));
m_ops.last().m_checkedOffset = 0;
return;
}
// Emit the repeated alternatives.
size_t repeatLoop = m_ops.size();
m_ops.append(YarrOp(YarrOpCode::BodyAlternativeBegin));
m_ops.last().m_previousOp = notFound;
// Collect BoyerMooreInfo if it is possible and profitable. BoyerMooreInfo will be used to emit fast skip path with large stride
// at the beginning of the body alternatives.
// We do not emit these fast path when RegExp has sticky or unicode flag. Sticky case does not need this since
// it fails when the body alternatives fail to match with the current offset.
// FIXME: Support unicode flag.
// https://bugs.webkit.org/show_bug.cgi?id=228611
if (disjunction->m_minimumSize && !m_pattern.sticky() && !m_pattern.eitherUnicode()) {
auto bmInfo = BoyerMooreInfo::create(m_charSize, std::min<unsigned>(disjunction->m_minimumSize, BoyerMooreInfo::maxLength));
if (collectBoyerMooreInfo(disjunction, currentAlternativeIndex, bmInfo.get())) {
dataLogLnIf(YarrJITInternal::verbose, bmInfo.get());
m_ops.last().m_bmInfo = bmInfo.ptr();
m_bmInfos.append(WTFMove(bmInfo));
m_usesT2 = true;
if (m_sampleString)
m_sampler.sample(m_sampleString.value());
} else
dataLogLnIf(YarrJITInternal::verbose, "BM collection failed");
}
do {
size_t lastOpIndex = m_ops.size() - 1;
PatternAlternative* alternative = alternatives[currentAlternativeIndex].get();
ASSERT(!alternative->onceThrough());
m_ops[lastOpIndex].m_checkedOffset = alternative->m_minimumSize;
opCompileAlternative(alternative->m_minimumSize, alternative);
size_t thisOpIndex = m_ops.size();
m_ops.append(YarrOp(YarrOpCode::BodyAlternativeNext));
YarrOp& lastOp = m_ops[lastOpIndex];
YarrOp& thisOp = m_ops[thisOpIndex];
lastOp.m_alternative = alternative;
lastOp.m_nextOp = thisOpIndex;
thisOp.m_previousOp = lastOpIndex;
++currentAlternativeIndex;
} while (currentAlternativeIndex < alternatives.size());
YarrOp& lastOp = m_ops.last();
ASSERT(lastOp.m_op == YarrOpCode::BodyAlternativeNext);
lastOp.m_op = YarrOpCode::BodyAlternativeEnd;
lastOp.m_alternative = nullptr;
lastOp.m_nextOp = repeatLoop;
lastOp.m_checkedOffset = 0;
}
std::optional<unsigned> collectBoyerMooreInfoFromTerm(PatternTerm& term, unsigned cursor, BoyerMooreInfo& bmInfo)
{
switch (term.type) {
case PatternTerm::Type::AssertionBOL:
case PatternTerm::Type::AssertionEOL:
case PatternTerm::Type::AssertionWordBoundary:
// Conservatively say any assertions just match.
return cursor;
case PatternTerm::Type::BackReference:
case PatternTerm::Type::ForwardReference:
return std::nullopt;
case PatternTerm::Type::ParenthesesSubpattern: {
// Right now, we only support /(...)/ or /(...)?/ case.
PatternDisjunction* disjunction = term.parentheses.disjunction;
if (term.quantityType != QuantifierType::FixedCount && term.quantityType != QuantifierType::Greedy)
return std::nullopt;
if (term.quantityMaxCount != 1)
return std::nullopt;
if (term.m_matchDirection != MatchDirection::Forward)
return std::nullopt;
if (term.m_invert)
return std::nullopt;
auto& alternatives = disjunction->m_alternatives;
std::optional<unsigned> minimumCursor;
for (unsigned i = 0; i < alternatives.size(); ++i) {
PatternAlternative* alternative = alternatives[i].get();
unsigned alternativeCursor = cursor;
for (unsigned index = 0; index < alternative->m_terms.size() && alternativeCursor < bmInfo.length(); ++index) {
PatternTerm& term = alternative->m_terms[index];
std::optional<unsigned> nextCursor = collectBoyerMooreInfoFromTerm(term, alternativeCursor, bmInfo);
if (!nextCursor) {
dataLogLnIf(YarrJITInternal::verbose, "Shortening to ", alternativeCursor);
bmInfo.shortenLength(alternativeCursor);
break;
}
alternativeCursor = nextCursor.value();
}
if (!minimumCursor)
minimumCursor = alternativeCursor;
else if (minimumCursor.value() != alternativeCursor) {
// Alternatives have different size.
// Let's say we have /(aaa|b)c/. Then, we would like to create BM info,
//
// offset 0 1
// characters a a
// b c
//
// And we do not want to create 2, 3, 4 offsets since it changes based on whether we pick "aaa" or "b".
// So, when we encounter (aaa|b), after applying each alternative to BMInfo, we cut BMInfo candidate length
// with the shortest + 1 size, in this case "2".
if (minimumCursor.value() > alternativeCursor)
minimumCursor = alternativeCursor;
dataLogLnIf(YarrJITInternal::verbose, "Shortening to ", minimumCursor.value() + 1);
bmInfo.shortenLength(minimumCursor.value() + 1);
}
}
if (term.quantityType == QuantifierType::FixedCount)
cursor = minimumCursor.value();
else {
// Let's see /(aaaa|bbbb)?c/. In this case, we do not update the cursor since "(aaaa|bbbb)" is optional.
// And let's shorten the candidate to "1" in this case since we do not want to apply "c" to all possible subsequent cases.
dataLogLnIf(YarrJITInternal::verbose, "Shortening to ", cursor + 1);
bmInfo.shortenLength(cursor + 1);
}
return cursor;
}
case PatternTerm::Type::ParentheticalAssertion:
return std::nullopt;
case PatternTerm::Type::DotStarEnclosure:
return std::nullopt;
case PatternTerm::Type::CharacterClass: {
if (term.quantityType != QuantifierType::FixedCount && term.quantityType != QuantifierType::Greedy)
return std::nullopt;
if (term.quantityMaxCount != 1)
return std::nullopt;
if (term.inputPosition != cursor)
return std::nullopt;
auto& characterClass = *term.characterClass;
if (term.invert() || characterClass.m_anyCharacter) {
bmInfo.setAll(cursor);
// If this is greedy one-character pattern "a?", we should not increase cursor.
// If we see greedy pattern, then we cut bmInfo here to avoid possibility explosion.
if (term.quantityType == QuantifierType::FixedCount)
++cursor;
else
bmInfo.shortenLength(cursor + 1);
return cursor;
}
if (!characterClass.m_rangesUnicode.isEmpty())
bmInfo.addRanges(cursor, characterClass.m_rangesUnicode);
if (!characterClass.m_matchesUnicode.isEmpty())
bmInfo.addCharacters(cursor, characterClass.m_matchesUnicode);
if (!characterClass.m_ranges.isEmpty())
bmInfo.addRanges(cursor, characterClass.m_ranges);
if (!characterClass.m_matches.isEmpty())
bmInfo.addCharacters(cursor, characterClass.m_matches);
// If this is greedy one-character pattern "a?", we should not increase cursor.
// If we see greedy pattern, then we cut bmInfo here to avoid possibility explosion.
if (term.quantityType == QuantifierType::FixedCount)
++cursor;
else
bmInfo.shortenLength(cursor + 1);
return cursor;
}
case PatternTerm::Type::PatternCharacter: {
if (term.quantityType != QuantifierType::FixedCount && term.quantityType != QuantifierType::Greedy)
return std::nullopt;
if (term.quantityMaxCount != 1)
return std::nullopt;
if (term.inputPosition != cursor)
return std::nullopt;
if (U16_LENGTH(term.patternCharacter) != 1 && m_decodeSurrogatePairs)
return std::nullopt;
// For case-insesitive compares, non-ascii characters that have different
// upper & lower case representations are already converted to a character class.
ASSERT(!term.ignoreCase() || isASCIIAlpha(term.patternCharacter) || isCanonicallyUnique(term.patternCharacter, m_canonicalMode));
if (term.ignoreCase() && isASCIIAlpha(term.patternCharacter)) {
bmInfo.set(cursor, toASCIIUpper(term.patternCharacter));
bmInfo.set(cursor, toASCIILower(term.patternCharacter));
} else
bmInfo.set(cursor, term.patternCharacter);
// If this is greedy one-character pattern "a?", we should not increase cursor.
// If we see greedy pattern, then we cut bmInfo here to avoid possibility explosion.
if (term.quantityType == QuantifierType::FixedCount)
++cursor;
else
bmInfo.shortenLength(cursor + 1);
return cursor;
}
}
return std::nullopt;
}
bool collectBoyerMooreInfo(PatternDisjunction* disjunction, size_t currentAlternativeIndex, BoyerMooreInfo& bmInfo)
{
// If we have a searching pattern /abcdef/, then we can check the 6th character against a set of {a, b, c, d, e, f}.
// If it does not match, we can shift 6 characters. We use this strategy since this way can be extended easily to support
// disjunction, character-class, and ignore-cases. For example, in the case of /(?:abc|def)/, we can check 3rd character
// against {a, b, c, d, e, f} and shift 3 characters if it does not match.
//
// Then, the best way to perform the above shifting is that finding the longest character sequence which does not have
// many candidates. In the case of /[a-z]aaaaaaa[a-z]/, we can extract "aaaaaaa" sequence and check 8th character against {a}.
// If it does not match, then we can shift 7 characters (length of "aaaaaaa"). This shifting is better than using "[a-z]aaaaaaa[a-z]"
// sequence and {a-z} set since {a-z} set will almost always match.
//
// We first collect possible characters for each character position. Then, apply heuristics to extract good character sequence from
// that and construct fast searching with long stride.
ASSERT(disjunction->m_minimumSize);
// FIXME: Support non-fixed-sized lookahead (e.g. /.*abc/ and extract "abc" sequence).
// https://bugs.webkit.org/show_bug.cgi?id=228612
auto& alternatives = disjunction->m_alternatives;
for (; currentAlternativeIndex < alternatives.size(); ++currentAlternativeIndex) {
unsigned cursor = 0;
PatternAlternative* alternative = alternatives[currentAlternativeIndex].get();
for (unsigned index = 0; index < alternative->m_terms.size() && cursor < bmInfo.length(); ++index) {
PatternTerm& term = alternative->m_terms[index];
std::optional<unsigned> nextCursor = collectBoyerMooreInfoFromTerm(term, cursor, bmInfo);
if (!nextCursor) {
dataLogLnIf(YarrJITInternal::verbose, "Shortening to ", cursor);
bmInfo.shortenLength(cursor);
break;
}
cursor = nextCursor.value();
}
}
return bmInfo.length();
}
std::span<const BoyerMooreBitmap::Map::WordType> getBoyerMooreBitmap(const BoyerMooreBitmap::Map& map)
{
if (auto existing = m_boyerMooreData->tryReuseBoyerMooreBitmap(map); existing.size())
return existing;
auto heapMap = makeUniqueRef<BoyerMooreBitmap::Map>(map);
auto pointer = heapMap->storage();
m_bmMaps.append(WTFMove(heapMap));
return pointer;
}
RegisterSet calleeSaveRegisters()
{
RegisterSet registers;
#if CPU(X86_64)
if (m_pattern.m_saveInitialStartValue)
registers.add(X86Registers::ebx, IgnoreVectors);
if (m_containsNestedSubpatterns)
registers.add(X86Registers::r12, IgnoreVectors);
if (mayCall()) {
registers.add(X86Registers::r13, IgnoreVectors);
registers.add(X86Registers::r14, IgnoreVectors);
registers.add(X86Registers::r15, IgnoreVectors);
} else if (m_pattern.hasDuplicateNamedCaptureGroups())
registers.add(X86Registers::r14, IgnoreVectors);
#elif CPU(ARM64)
#elif CPU(ARM_THUMB2)
registers.add(ARMRegisters::r4, IgnoreVectors);
registers.add(ARMRegisters::r5, IgnoreVectors);
registers.add(ARMRegisters::r6, IgnoreVectors);
registers.add(ARMRegisters::r8, IgnoreVectors);
registers.add(ARMRegisters::r10, IgnoreVectors);
#elif CPU(RISCV64)
#endif
return registers;
}
void generateEnter()
{
#if CPU(X86_64) || CPU(ARM_THUMB2) || CPU(RISCV64)
m_jit.emitFunctionPrologue();
#elif CPU(ARM64)
// JITCage code is doing prologue and epilogue in thunk.
if (!Options::useJITCage()) {
if (mayCall() || m_containsNestedSubpatterns)
m_jit.emitFunctionPrologue();
else
m_jit.tagReturnAddress();
}
#endif
if (m_calleeSaves.registerCount()) {
size_t stackSizeForCalleeSaves = WTF::roundUpToMultipleOf<stackAlignmentBytes()>(m_calleeSaves.registerCount() * sizeof(UCPURegister));
#if CPU(X86_64) || CPU(ARM64)
m_jit.subPtr(GPRInfo::callFrameRegister, CCallHelpers::TrustedImm32(stackSizeForCalleeSaves), MacroAssembler::stackPointerRegister);
#else
m_jit.subPtr(GPRInfo::callFrameRegister, CCallHelpers::TrustedImm32(stackSizeForCalleeSaves), m_regs.regT0);
m_jit.move(m_regs.regT0, MacroAssembler::stackPointerRegister);
#endif
m_jit.emitSaveCalleeSavesFor(&m_calleeSaves);
}
}
void generateReturn()
{
#if ENABLE(YARR_JIT_REGEXP_TEST_INLINE)
if (m_compileMode == JITCompileMode::InlineTest) {
m_inlinedMatched.append(m_jit.jump());
return;
}
#endif
m_jit.emitRestoreCalleeSavesFor(&m_calleeSaves);
#if CPU(X86_64) || CPU(ARM_THUMB2) || CPU(RISCV64)
m_jit.emitFunctionEpilogue();
#elif CPU(ARM64)
// JITCage code is doing prologue and epilogue in thunk.
if (!Options::useJITCage()) {
if (mayCall() || m_containsNestedSubpatterns)
m_jit.emitFunctionEpilogue();
}
#endif
#if CPU(ARM64E)
if (Options::useJITCage())
m_jit.farJump(MacroAssembler::TrustedImmPtr(retagCodePtr<void*, CFunctionPtrTag, OperationPtrTag>(&vmEntryToYarrJITAfter)), OperationPtrTag);
else
m_jit.ret();
#else
m_jit.ret();
#endif
}
void loadSubPattern(MacroAssembler::RegisterID outputGPR, unsigned subpatternId, MacroAssembler::RegisterID startIndexGPR, MacroAssembler::RegisterID endIndexOrLenGPR)
{
m_jit.loadPair32(outputGPR, MacroAssembler::TrustedImm32((subpatternId << 1) * sizeof(int)), startIndexGPR, endIndexOrLenGPR);
}
void loadSubPatternIdForDuplicateNamedGroup(MacroAssembler::RegisterID outputGPR, unsigned duplicateNamedGroupId, MacroAssembler::RegisterID subpatternIdGPR)
{
m_jit.load32(MacroAssembler::Address(outputGPR, offsetForDuplicateNamedGroupId(duplicateNamedGroupId) * sizeof(unsigned)), subpatternIdGPR);
}
void loadSubPattern(MacroAssembler::RegisterID outputGPR, MacroAssembler::RegisterID subpatternIdGPR, MacroAssembler::RegisterID startIndexGPR, MacroAssembler::RegisterID endIndexOrLenGPR)
{
m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(outputGPR, subpatternIdGPR, MacroAssembler::TimesEight), endIndexOrLenGPR);
m_jit.loadPair32(endIndexOrLenGPR, startIndexGPR, endIndexOrLenGPR);
}
void loadSubPatternEnd(MacroAssembler::RegisterID outputGPR, MacroAssembler::RegisterID subpatternIdGPR, MacroAssembler::RegisterID endIndex)
{
m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(outputGPR, subpatternIdGPR, MacroAssembler::TimesEight), endIndex);
m_jit.load32(MacroAssembler::Address(endIndex, sizeof(unsigned)), endIndex);
}
public:
YarrGenerator(CCallHelpers& jit, VM* vm, YarrCodeBlock* codeBlock, const YarrJITRegs& regs, YarrPattern& pattern, StringView patternString, CharSize charSize, JITCompileMode compileMode, std::optional<StringView> sampleString)
: m_jit(jit)
, m_vm(vm)
, m_codeBlock(codeBlock)
, m_boyerMooreData(static_cast<YarrBoyerMooreData*>(codeBlock))
, m_regs(regs)
, m_pattern(pattern)
, m_patternString(patternString)
, m_charSize(charSize)
, m_compileMode(compileMode)
, m_decodeSurrogatePairs(m_charSize == CharSize::Char16 && m_pattern.eitherUnicode())
, m_unicodeIgnoreCase(m_pattern.eitherUnicode() && m_pattern.ignoreCase())
, m_decode16BitForBackreferencesWithCalls(m_charSize == CharSize::Char16 && m_pattern.m_containsBackreferences && m_pattern.ignoreCase())
, m_callFrameSizeInBytes(alignCallFrameSizeInBytes(m_pattern.m_body->m_callFrameSize))
, m_canonicalMode(m_pattern.eitherUnicode() ? CanonicalMode::Unicode : CanonicalMode::UCS2)
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
, m_parenContextSizes(compileMode == JITCompileMode::IncludeSubpatterns ? m_pattern.m_numSubpatterns : 0, compileMode == JITCompileMode::IncludeSubpatterns ? m_pattern.m_numDuplicateNamedCaptureGroups : 0, m_pattern.m_body->m_callFrameSize)
#endif
, m_sampleString(sampleString)
, m_sampler(charSize)
{
}
YarrGenerator(CCallHelpers& jit, VM* vm, YarrBoyerMooreData* yarrBMData, const YarrJITRegs& regs, YarrPattern& pattern, StringView patternString, CharSize charSize, JITCompileMode compileMode)
: m_jit(jit)
, m_vm(vm)
, m_codeBlock(nullptr)
, m_boyerMooreData(yarrBMData)
, m_regs(regs)
, m_pattern(pattern)
, m_patternString(patternString)
, m_charSize(charSize)
, m_compileMode(compileMode)
, m_decodeSurrogatePairs(m_charSize == CharSize::Char16 && m_pattern.eitherUnicode())
, m_unicodeIgnoreCase(m_pattern.eitherUnicode() && m_pattern.ignoreCase())
, m_decode16BitForBackreferencesWithCalls(m_charSize == CharSize::Char16 && m_pattern.m_containsBackreferences && m_pattern.ignoreCase())
, m_callFrameSizeInBytes(alignCallFrameSizeInBytes(m_pattern.m_body->m_callFrameSize))
, m_canonicalMode(m_pattern.eitherUnicode() ? CanonicalMode::Unicode : CanonicalMode::UCS2)
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
, m_parenContextSizes(compileMode == JITCompileMode::IncludeSubpatterns ? m_pattern.m_numSubpatterns : 0, compileMode == JITCompileMode::IncludeSubpatterns ? m_pattern.m_numDuplicateNamedCaptureGroups : 0, m_pattern.m_body->m_callFrameSize)
#endif
, m_sampler(charSize)
{
if (m_pattern.m_containsBackreferences)
m_usesT2 = true;
}
bool isSafeToRecurse() const
{
if (m_compilationThreadStackChecker)
return m_compilationThreadStackChecker->isSafeToRecurse();
return m_vm->isSafeToRecurse();
}
void setStackChecker(StackCheck* stackChecker)
{
m_compilationThreadStackChecker = stackChecker;
}
template<typename OperationType>
static constexpr void functionChecks()
{
static_assert(FunctionTraits<OperationType>::cCallArity() == 5, "YarrJITCode takes 5 arguments");
static_assert(std::is_same<MatchingContextHolder*, typename FunctionTraits<OperationType>::template ArgumentType<4>>::value, "MatchingContextHolder* is expected as the function 5th argument");
}
void compile(YarrCodeBlock& codeBlock)
{
MacroAssembler::Label startOfMainCode;
#if !ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs) {
codeBlock.setFallBackWithFailureReason(JITFailureReason::DecodeSurrogatePair);
return;
}
#endif
if (m_pattern.m_containsBackreferences
#if ENABLE(YARR_JIT_BACKREFERENCES)
#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
&& (m_compileMode == JITCompileMode::MatchOnly)
#else
&& (m_compileMode == JITCompileMode::MatchOnly || (m_pattern.ignoreCase() && m_charSize != CharSize::Char8))
#endif
#endif
) {
codeBlock.setFallBackWithFailureReason(JITFailureReason::BackReference);
return;
}
if (m_pattern.m_containsLookbehinds) {
codeBlock.setFallBackWithFailureReason(JITFailureReason::Lookbehind);
return;
}
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
if (m_decodeSurrogatePairs && m_compileMode != JITCompileMode::InlineTest && !m_pattern.multiline() && !m_pattern.m_containsBOL && !m_pattern.m_containsLookbehinds && !m_pattern.m_containsModifiers) {
ASSERT(m_regs.firstCharacterAdditionalReadSize != InvalidGPRReg);
m_useFirstNonBMPCharacterOptimization = true;
}
#endif
// We need to compile before generating code since we set flags based on compilation that
// are used during generation.
opCompileBody(m_pattern.m_body);
if (m_failureReason) {
codeBlock.setFallBackWithFailureReason(*m_failureReason);
return;
}
if (Options::dumpDisassembly() || Options::dumpRegExpDisassembly()) [[unlikely]]
m_disassembler = makeUnique<YarrDisassembler>(this);
if (m_disassembler)
m_disassembler->setStartOfCode(m_jit.label());
m_calleeSaves = RegisterAtOffsetList(calleeSaveRegisters());
generateEnter();
startOfMainCode = m_jit.label();
MacroAssembler::Jump hasInput = checkInput();
generateFailReturn();
hasInput.link(&m_jit);
if (m_callFrameSizeInBytes) {
// Check stack size
m_jit.addPtr(MacroAssembler::TrustedImm32(-m_callFrameSizeInBytes), MacroAssembler::stackPointerRegister, m_regs.regT0);
// Make sure that the JITed functions have 5 parameters and that the 5th argument is a MatchingContextHolder*
functionChecks<YarrCodeBlock::YarrJITCode8>();
functionChecks<YarrCodeBlock::YarrJITCode16>();
functionChecks<YarrCodeBlock::YarrJITCodeMatchOnly8>();
functionChecks<YarrCodeBlock::YarrJITCodeMatchOnly16>();
#if CPU(ARM_THUMB2)
// Not enough argument registers: try to load the 5th argument from the stack
MacroAssembler::RegisterID matchingContext = m_regs.regT1;
unsigned offset = POKE_ARGUMENT_OFFSET;
m_jit.loadPtr(MacroAssembler::Address(GPRInfo::callFrameRegister, offset * sizeof(void*)), matchingContext);
#else
MacroAssembler::RegisterID matchingContext = m_regs.matchingContext;
#endif
MacroAssembler::Jump stackOk = m_jit.branchPtr(MacroAssembler::BelowOrEqual, MacroAssembler::Address(matchingContext, MatchingContextHolder::offsetOfStackLimit()), m_regs.regT0);
// Exceeded stack limit, punt to the interpreter.
m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), m_regs.returnRegister);
m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);
generateReturn();
stackOk.link(&m_jit);
m_jit.move(m_regs.regT0, MacroAssembler::stackPointerRegister);
}
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs)
m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(m_regs.input, m_regs.length, MacroAssembler::TimesTwo), m_regs.endOfStringAddress);
#endif
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
if (m_containsNestedSubpatterns) {
m_jit.move(MacroAssembler::TrustedImm32(matchLimit), m_regs.remainingMatchCount);
// Initialize freelist to null - contexts will be allocated from stack
// and freed contexts will be added to the freelist for reuse
if (m_regs.freelistRegister != InvalidGPRReg)
m_jit.move(MacroAssembler::TrustedImmPtr(nullptr), m_regs.freelistRegister);
else
m_jit.storePtr(MacroAssembler::TrustedImmPtr(nullptr), MacroAssembler::Address(m_regs.matchingContext, MatchingContextHolder::offsetOfFreeList()));
}
#endif
// Initialize subpatterns' starts. And initialize matchStart if `!m_pattern.m_body->m_hasFixedSize`.
// If the mode is JITCompileMode::IncludeSubpatterns, then matchStart is subpatterns[0]'s start.
if (m_compileMode == JITCompileMode::IncludeSubpatterns) {
unsigned subpatternId = 0;
// First subpatternId's start is configured to `index` if !m_pattern.m_body->m_hasFixedSize.
if (!m_pattern.m_body->m_hasFixedSize) {
setMatchStart(m_regs.index);
++subpatternId;
}
for (; subpatternId < m_pattern.m_numSubpatterns + 1; ++subpatternId)
m_jit.store32(MacroAssembler::TrustedImm32(-1), MacroAssembler::Address(m_regs.output, (subpatternId << 1) * sizeof(int)));
for (unsigned i = m_pattern.offsetVectorBaseForNamedCaptures(); i < m_pattern.offsetsSize(); ++i)
m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (i) * sizeof(int)));
} else {
if (!m_pattern.m_body->m_hasFixedSize)
setMatchStart(m_regs.index);
}
if (m_pattern.m_saveInitialStartValue)
m_jit.move(m_regs.index, m_regs.initialStart);
generate();
if (m_disassembler)
m_disassembler->setEndOfGenerate(m_jit.label());
backtrack();
if (m_disassembler)
m_disassembler->setEndOfBacktrack(m_jit.label());
ptrdiff_t codeSize = MacroAssembler::differenceBetween(startOfMainCode, m_jit.label());
bool canInline = ([&] -> bool {
if (m_compileMode == JITCompileMode::IncludeSubpatterns)
return false;
if (m_pattern.global())
return false;
if (m_pattern.sticky())
return false;
if (m_pattern.eitherUnicode())
return false;
if (mayCall())
return false;
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
if (m_containsNestedSubpatterns)
return false;
#endif
if (m_pattern.m_containsBackreferences)
return false;
if (m_pattern.m_saveInitialStartValue)
return false;
return true;
}());
generateJITFailReturn();
if (m_disassembler)
m_disassembler->setEndOfCode(m_jit.label());
auto backtrackRecords = m_backtrackingState.backtrackRecords();
if (!backtrackRecords.isEmpty()) {
m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
BacktrackingState::linkBacktrackRecords(linkBuffer, backtrackRecords);
});
}
if (m_disassembler) {
// Disassemble after all link tasks are complete.
m_jit.addLinkTask([=, this] (LinkBuffer& linkBuffer) {
m_disassembler->dump(linkBuffer);
});
}
LinkBuffer linkBuffer(m_jit, &codeBlock, LinkBuffer::Profile::YarrJIT, JITCompilationCanFail);
if (linkBuffer.didFailToAllocate()) {
codeBlock.setFallBackWithFailureReason(JITFailureReason::ExecutableMemoryAllocationFailure);
return;
}
if (m_compileMode == JITCompileMode::MatchOnly) {
if (m_charSize == CharSize::Char8) {
codeBlock.set8BitCodeMatchOnly(FINALIZE_REGEXP_CODE(linkBuffer, YarrMatchOnly8BitPtrTag, nullptr, "Match-only 8-bit regular expression"), WTFMove(m_bmMaps));
codeBlock.set8BitInlineStats(codeSize, m_callFrameSizeInBytes, canInline, m_usesT2);
} else {
codeBlock.set16BitCodeMatchOnly(FINALIZE_REGEXP_CODE(linkBuffer, YarrMatchOnly16BitPtrTag, nullptr, "Match-only 16-bit regular expression"), WTFMove(m_bmMaps));
codeBlock.set16BitInlineStats(codeSize, m_callFrameSizeInBytes, canInline, m_usesT2);
}
} else {
if (m_charSize == CharSize::Char8)
codeBlock.set8BitCode(FINALIZE_REGEXP_CODE(linkBuffer, Yarr8BitPtrTag, nullptr, "8-bit regular expression"), WTFMove(m_bmMaps));
else
codeBlock.set16BitCode(FINALIZE_REGEXP_CODE(linkBuffer, Yarr16BitPtrTag, nullptr, "16-bit regular expression"), WTFMove(m_bmMaps));
}
if (m_failureReason)
codeBlock.setFallBackWithFailureReason(*m_failureReason);
}
#if ENABLE(YARR_JIT_REGEXP_TEST_INLINE)
void compileInline(YarrBoyerMooreData& boyerMooreData)
{
RELEASE_ASSERT(!m_pattern.m_containsBackreferences);
// We need to compile before generating code since we set flags based on compilation that
// are used during generation.
opCompileBody(m_pattern.m_body);
#if !ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
RELEASE_ASSERT(!m_decodeSurrogatePairs);
#endif
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
RELEASE_ASSERT(!m_containsNestedSubpatterns);
#endif
if (Options::dumpDisassembly() || Options::dumpRegExpDisassembly()) [[unlikely]]
m_disassembler = makeUnique<YarrDisassembler>(this);
if (m_disassembler)
m_disassembler->setStartOfCode(m_jit.label());
if (m_failureReason) {
m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), m_regs.returnRegister);
m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);
return;
}
if (m_usesT2)
ASSERT(m_regs.regT2 != MacroAssembler::InvalidGPRReg);
MacroAssembler::Jump hasInput = checkInput();
generateFailReturn();
hasInput.link(&m_jit);
if (m_callFrameSizeInBytes) {
// Create space on stack for matching context data.
// Note that this stack check cannot clobber m_regs.regT1 as it is needed for the slow path we call if we fail the stack check.
m_jit.addPtr(MacroAssembler::TrustedImm32(-m_callFrameSizeInBytes), MacroAssembler::stackPointerRegister, m_regs.regT0);
MacroAssembler::Jump stackOk = m_jit.branchPtr(MacroAssembler::LessThanOrEqual, MacroAssembler::AbsoluteAddress(const_cast<VM*>(m_vm)->addressOfSoftStackLimit()), m_regs.regT0);
// Exceeded stack limit, punt to the interpreter.
m_jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), m_regs.returnRegister);
m_jit.move(MacroAssembler::TrustedImm32(0), m_regs.returnRegister2);
m_inlinedFailedMatch.append(m_jit.jump());
stackOk.link(&m_jit);
m_jit.move(m_regs.regT0, MacroAssembler::stackPointerRegister);
}
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
if (m_decodeSurrogatePairs)
m_jit.getEffectiveAddress(MacroAssembler::BaseIndex(m_regs.input, m_regs.length, MacroAssembler::TimesTwo), m_regs.endOfStringAddress);
#endif
if (m_compileMode == JITCompileMode::IncludeSubpatterns) {
for (unsigned i = 0; i < m_pattern.m_numSubpatterns + 1; ++i)
m_jit.store32(MacroAssembler::TrustedImm32(-1), MacroAssembler::Address(m_regs.output, (i << 1) * sizeof(int)));
for (unsigned i = m_pattern.offsetVectorBaseForNamedCaptures(); i < m_pattern.offsetsSize(); ++i)
m_jit.store32(MacroAssembler::TrustedImm32(0), MacroAssembler::Address(m_regs.output, (i) * sizeof(int)));
}
if (!m_pattern.m_body->m_hasFixedSize)
setMatchStart(m_regs.index);
if (m_pattern.m_saveInitialStartValue)
m_jit.move(m_regs.index, m_regs.initialStart);
generate();
if (m_disassembler)
m_disassembler->setEndOfGenerate(m_jit.label());
backtrack();
if (m_disassembler)
m_disassembler->setEndOfBacktrack(m_jit.label());
generateJITFailReturn();
if (m_disassembler)
m_disassembler->setEndOfCode(m_jit.label());
m_inlinedFailedMatch.link(&m_jit);
m_inlinedMatched.link(&m_jit);
auto backtrackRecords = m_backtrackingState.backtrackRecords();
if (!backtrackRecords.isEmpty()) {
m_jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
BacktrackingState::linkBacktrackRecords(linkBuffer, backtrackRecords);
});
}
boyerMooreData.saveMaps(WTFMove(m_bmMaps));
}
#endif
const char* variant() final
{
if (m_compileMode == JITCompileMode::MatchOnly) {
if (m_charSize == CharSize::Char8)
return "Match-only 8-bit regular expression";
return "Match-only 16-bit regular expression";
}
if (m_charSize == CharSize::Char8)
return "8-bit regular expression";
return "16-bit regular expression";
}
unsigned opCount() final
{
return m_ops.size();
}
void dumpPatternString(PrintStream& out) final
{
m_pattern.dumpPatternString(out, m_patternString);
}
int dumpFor(PrintStream& out, unsigned opIndex) final
{
if (opIndex >= opCount())
return 0;
out.printf("%4d:", opIndex);
YarrOp& op = m_ops[opIndex];
PatternTerm* term = op.m_term;
switch (op.m_op) {
case YarrOpCode::Term: {
out.print("Term ");
switch (term->type) {
case PatternTerm::Type::AssertionBOL:
out.printf("Assert BOL checked-offset:(%u)", op.m_checkedOffset.value());
break;
case PatternTerm::Type::AssertionEOL:
out.printf("Assert EOL checked-offset:(%u)", op.m_checkedOffset.value());
break;
case PatternTerm::Type::BackReference:
out.printf("BackReference pattern #%u checked-offset:(%u)", term->backReferenceSubpatternId, op.m_checkedOffset.value());
term->dumpQuantifier(out);
break;
case PatternTerm::Type::PatternCharacter:
out.printf("PatternCharacter checked-offset:(%u) ", op.m_checkedOffset.value());
dumpChar32(out, term->patternCharacter);
if (op.m_term->ignoreCase())
out.print("ignore case ");
term->dumpQuantifier(out);
break;
case PatternTerm::Type::CharacterClass:
out.printf("PatternCharacterClass checked-offset:(%u) ", op.m_checkedOffset.value());
if (term->invert())
out.print("not ");
dumpCharacterClass(out, &m_pattern, term->characterClass);
term->dumpQuantifier(out);
break;
case PatternTerm::Type::AssertionWordBoundary:
out.printf("%sword boundary checked-offset:(%u)", term->invert() ? "non-" : "", op.m_checkedOffset.value());
break;
case PatternTerm::Type::DotStarEnclosure:
out.printf(".* enclosure checked-offset:(%u)", op.m_checkedOffset.value());
break;
case PatternTerm::Type::ForwardReference:
out.printf("ForwardReference <not handled> checked-offset:(%u)", op.m_checkedOffset.value());
break;
case PatternTerm::Type::ParenthesesSubpattern:
case PatternTerm::Type::ParentheticalAssertion:
RELEASE_ASSERT_NOT_REACHED();
break;
}
if (op.m_isDeadCode)
out.print(" already handled");
out.print("\n");
return 0;
}
case YarrOpCode::BodyAlternativeBegin:
out.printf("BodyAlternativeBegin minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
return 0;
case YarrOpCode::BodyAlternativeNext:
out.printf("BodyAlternativeNext minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
return 0;
case YarrOpCode::BodyAlternativeEnd:
out.printf("BodyAlternativeEnd checked-offset:(%u)\n", op.m_checkedOffset.value());
return 0;
case YarrOpCode::SimpleNestedAlternativeBegin:
out.printf("SimpleNestedAlternativeBegin minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
return 1;
case YarrOpCode::StringListAlternativeBegin:
out.printf("StringListAlternativeBegin minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
return 1;
case YarrOpCode::NestedAlternativeBegin:
out.printf("NestedAlternativeBegin minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
return 1;
case YarrOpCode::SimpleNestedAlternativeNext:
out.printf("SimpleNestedAlternativeNext minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
return 0;
case YarrOpCode::StringListAlternativeNext:
out.printf("StringListAlternativeNext minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
return 0;
case YarrOpCode::NestedAlternativeNext:
out.printf("NestedAlternativeNext minimum-size:(%u),checked-offset:(%u)\n", op.m_alternative->m_minimumSize, op.m_checkedOffset.value());
return 0;
case YarrOpCode::SimpleNestedAlternativeEnd:
out.printf("SimpleNestedAlternativeEnd checked-offset:(%u) ", op.m_checkedOffset.value());
term->dumpQuantifier(out);
out.print("\n");
return -1;
case YarrOpCode::StringListAlternativeEnd:
out.printf("StringListAlternativeEnd checked-offset:(%u) ", op.m_checkedOffset.value());
term->dumpQuantifier(out);
out.print("\n");
return -1;
case YarrOpCode::NestedAlternativeEnd:
out.printf("NestedAlternativeEnd checked-offset:(%u) ", op.m_checkedOffset.value());
term->dumpQuantifier(out);
out.print("\n");
return -1;
case YarrOpCode::ParenthesesSubpatternOnceBegin:
out.printf("ParenthesesSubpatternOnceBegin checked-offset:(%u) ", op.m_checkedOffset.value());
if (term->capture())
out.printf("capturing pattern #%u ", term->parentheses.subpatternId);
else
out.print("non-capturing ");
term->dumpQuantifier(out);
out.print("\n");
return 0;
case YarrOpCode::ParenthesesSubpatternOnceEnd:
out.printf("ParenthesesSubpatternOnceEnd checked-offset:(%u) ", op.m_checkedOffset.value());
if (term->capture())
out.printf("capturing pattern #%u ", term->parentheses.subpatternId);
else
out.print("non-capturing ");
term->dumpQuantifier(out);
out.print("\n");
return 0;
case YarrOpCode::ParenthesesSubpatternTerminalBegin:
out.printf("ParenthesesSubpatternTerminalBegin checked-offset:(%u) ", op.m_checkedOffset.value());
if (term->capture())
out.printf("capturing pattern #%u\n", term->parentheses.subpatternId);
else
out.print("non-capturing\n");
return 0;
case YarrOpCode::ParenthesesSubpatternTerminalEnd:
out.printf("ParenthesesSubpatternTerminalEnd checked-offset:(%u) ", op.m_checkedOffset.value());
if (term->capture())
out.printf("capturing pattern #%u\n", term->parentheses.subpatternId);
else
out.print("non-capturing\n");
return 0;
case YarrOpCode::ParenthesesSubpatternBegin:
out.printf("ParenthesesSubpatternBegin checked-offset:(%u) ", op.m_checkedOffset.value());
if (term->capture())
out.printf("capturing pattern #%u", term->parentheses.subpatternId);
else
out.print("non-capturing");
term->dumpQuantifier(out);
out.print("\n");
return 0;
case YarrOpCode::ParenthesesSubpatternEnd:
out.printf("ParenthesesSubpatternEnd checked-offset:(%u) ", op.m_checkedOffset.value());
if (term->capture())
out.printf("capturing pattern #%u", term->parentheses.subpatternId);
else
out.print("non-capturing");
term->dumpQuantifier(out);
out.print("\n");
return 0;
case YarrOpCode::ParentheticalAssertionBegin:
out.printf("ParentheticalAssertionBegin%s checked-offset:(%u)\n", term->invert() ? " inverted" : "", op.m_checkedOffset.value());
return 0;
case YarrOpCode::ParentheticalAssertionEnd:
out.printf("ParentheticalAssertionEnd%s checked-offset:(%u)\n", term->invert() ? " inverted" : "", op.m_checkedOffset.value());
return 0;
case YarrOpCode::MatchFailed:
out.printf("MatchFailed checked-offset:(%u)\n", op.m_checkedOffset.value());
return 0;
}
return 0;
}
bool mayCall() const
{
return m_decodeSurrogatePairs || m_decode16BitForBackreferencesWithCalls || m_callFrameSizeInBytes;
}
private:
CCallHelpers& m_jit;
VM* m_vm;
YarrCodeBlock* const m_codeBlock;
YarrBoyerMooreData* const m_boyerMooreData;
const YarrJITRegs& m_regs;
StackCheck* m_compilationThreadStackChecker { nullptr };
YarrPattern& m_pattern;
const StringView m_patternString;
const CharSize m_charSize;
const JITCompileMode m_compileMode;
// Used to detect regular expression constructs that are not currently
// supported in the JIT; fall back to the interpreter when this is detected.
std::optional<JITFailureReason> m_failureReason;
const bool m_decodeSurrogatePairs : 1;
const bool m_unicodeIgnoreCase : 1;
const bool m_decode16BitForBackreferencesWithCalls : 1;
bool m_usesT2 : 1 { false };
unsigned m_callFrameSizeInBytes;
const CanonicalMode m_canonicalMode;
#if ENABLE(YARR_JIT_ALL_PARENS_EXPRESSIONS)
bool m_containsNestedSubpatterns { false };
ParenContextSizes m_parenContextSizes;
#endif
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS) && ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
bool m_useFirstNonBMPCharacterOptimization { false };
#endif
RegisterAtOffsetList m_calleeSaves;
MacroAssembler::JumpList m_abortExecution;
MacroAssembler::JumpList m_hitMatchLimit;
MacroAssembler::Label m_tryReadUnicodeCharacterEntry;
MacroAssembler::JumpList m_inlinedMatched;
MacroAssembler::JumpList m_inlinedFailedMatch;
// The regular expression expressed as a linear sequence of operations.
Vector<YarrOp, 128> m_ops;
Vector<UniqueRef<BoyerMooreInfo>, 4> m_bmInfos;
Vector<UniqueRef<BoyerMooreBitmap::Map>> m_bmMaps;
// This class records state whilst generating the backtracking path of code.
BacktrackingState m_backtrackingState;
std::unique_ptr<YarrDisassembler> m_disassembler;
std::optional<StringView> m_sampleString;
SubjectSampler m_sampler;
};
#if ENABLE(YARR_JIT_UNICODE_EXPRESSIONS)
static MacroAssemblerCodeRef<JITThunkPtrTag> tryReadUnicodeCharSlowThunkGenerator(VM&)
{
CCallHelpers jit(nullptr);
jit.tagReturnAddress();
tryReadUnicodeCharSlowImpl<TryReadUnicodeCharGenFirstNonBMPOptimization::DontUseOptimization>(jit);
jit.ret();
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID, LinkBuffer::Profile::Thunk);
return FINALIZE_THUNK(patchBuffer, JITThunkPtrTag, "Yarr tryReadUnicodeChar"_s, "YARR tryReadUnicodeChar thunk");
}
#if ENABLE(YARR_JIT_UNICODE_CAN_INCREMENT_INDEX_FOR_NON_BMP)
static MacroAssemblerCodeRef<JITThunkPtrTag> tryReadUnicodeCharIncForNonBMPSlowThunkGenerator(VM&)
{
CCallHelpers jit(nullptr);
jit.tagReturnAddress();
tryReadUnicodeCharSlowImpl<TryReadUnicodeCharGenFirstNonBMPOptimization::UseOptimization>(jit);
jit.ret();
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID, LinkBuffer::Profile::Thunk);
return FINALIZE_THUNK(patchBuffer, JITThunkPtrTag, "Yarr tryReadUnicodeChar w/Inc for non-BMP"_s, "YARR tryReadUnicodeChar w/Inc for non-BMP thunk");
}
#endif
#endif
#if ENABLE(YARR_JIT_BACKREFERENCES_FOR_16BIT_EXPRS)
static MacroAssemblerCodeRef<JITThunkPtrTag> areCanonicallyEquivalentThunkGenerator(VM&)
{
CCallHelpers jit(nullptr);
unsigned pushCount = 0;
#if CPU(ARM64)
constexpr unsigned registersToSave = 16;
auto pushCallerSavePair = [&]() {
jit.pushPair(GPRInfo::toRegister(pushCount), GPRInfo::toRegister(pushCount + 1));
pushCount += 2;
};
auto popCallerSavePair = [&]() {
pushCount -= 2;
jit.popPair(GPRInfo::toRegister(pushCount), GPRInfo::toRegister(pushCount + 1));
};
#elif CPU(X86_64)
constexpr unsigned registersToSave = 7;
constexpr GPRReg callerSaves[registersToSave] = {
// We don't save RAX since the return value ends up there.
X86Registers::ecx,
X86Registers::edx,
X86Registers::esi,
X86Registers::edi,
X86Registers::r8,
X86Registers::r9,
X86Registers::r10
};
auto pushCallerSave = [&]() {
jit.push(callerSaves[pushCount]);
pushCount++;
};
auto popCallerSave = [&]() {
pushCount--;
jit.pop(callerSaves[pushCount]);
};
#endif
jit.emitFunctionPrologue();
#if CPU(ARM64)
while (pushCount < registersToSave)
pushCallerSavePair();
#elif CPU(X86_64)
while (pushCount < registersToSave)
pushCallerSave();
#endif
jit.setupArguments<decltype(operationAreCanonicallyEquivalent)>(areCanonicallyEquivalentCharArgReg, areCanonicallyEquivalentPattCharArgReg, areCanonicallyEquivalentCanonicalModeArgReg);
jit.callOperation<OperationPtrTag>(operationAreCanonicallyEquivalent);
#if CPU(ARM64)
// Convert 8-bit bool result into 32 bit value and save in IP0 while restoring callee saves.
jit.zeroExtend8To32(GPRInfo::returnValueGPR, ARM64Registers::ip0);
while (pushCount)
popCallerSavePair();
jit.move(ARM64Registers::ip0, areCanonicallyEquivalentCharArgReg);
#elif CPU(X86_64)
// Convert 8-bit bool result into 32 bit value.
jit.zeroExtend8To32(GPRInfo::returnValueGPR, GPRInfo::returnValueGPR);
while (pushCount)
popCallerSave();
#endif
ASSERT(!pushCount);
jit.emitFunctionEpilogue();
jit.ret();
LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID, LinkBuffer::Profile::Thunk);
return FINALIZE_THUNK(patchBuffer, JITThunkPtrTag, "Yarr areCanonicallyEquivalent", "YARR areCanonicallyEquivalent call");
}
JSC_DEFINE_NOEXCEPT_JIT_OPERATION(operationAreCanonicallyEquivalent, bool, (unsigned a, unsigned b, CanonicalMode canonicalMode))
{
return areCanonicallyEquivalent(static_cast<char32_t>(a), static_cast<char32_t>(b), canonicalMode);
}
#endif
static void dumpCompileFailure(JITFailureReason failure)
{
switch (failure) {
case JITFailureReason::DecodeSurrogatePair:
dataLog("Can't JIT a pattern decoding surrogate pairs\n");
break;
case JITFailureReason::BackReference:
dataLog("Can't JIT some patterns containing back references\n");
break;
case JITFailureReason::ForwardReference:
dataLog("Can't JIT a pattern containing forward references\n");
break;
case JITFailureReason::Lookbehind:
dataLog("Can't JIT a pattern containing lookbehinds\n");
break;
case JITFailureReason::VariableCountedParenthesisWithNonZeroMinimum:
dataLog("Can't JIT a pattern containing a variable counted parenthesis with a non-zero minimum\n");
break;
case JITFailureReason::ParenthesizedSubpattern:
dataLog("Can't JIT a pattern containing parenthesized subpatterns\n");
break;
case JITFailureReason::FixedCountParenthesizedSubpattern:
dataLog("Can't JIT a pattern containing fixed count parenthesized subpatterns\n");
break;
case JITFailureReason::ParenthesisNestedTooDeep:
dataLog("Can't JIT pattern due to parentheses nested too deeply\n");
break;
case JITFailureReason::ExecutableMemoryAllocationFailure:
dataLog("Can't JIT because of failure of allocation of executable memory\n");
break;
case JITFailureReason::OffsetTooLarge:
dataLog("Can't JIT because pattern exceeds string length limits\n");
break;
}
}
void jitCompile(YarrPattern& pattern, StringView patternString, CharSize charSize, std::optional<StringView> sampleString, VM* vm, YarrCodeBlock& codeBlock, JITCompileMode mode)
{
CCallHelpers masm;
ASSERT(mode == JITCompileMode::MatchOnly || mode == JITCompileMode::IncludeSubpatterns);
YarrJITDefaultRegisters jitRegisters;
YarrGenerator<YarrJITDefaultRegisters>(masm, vm, &codeBlock, jitRegisters, pattern, patternString, charSize, mode, sampleString).compile(codeBlock);
if (auto failureReason = codeBlock.failureReason()) {
if (Options::dumpCompiledRegExpPatterns()) [[unlikely]] {
pattern.dumpPatternString(WTF::dataFile(), patternString);
dataLog(" : ");
dumpCompileFailure(*failureReason);
}
}
}
#if ENABLE(YARR_JIT_REGEXP_TEST_INLINE)
#if !(CPU(ARM64) || CPU(X86_64) || CPU(RISCV64))
#error "No support for inlined JIT'ing of RegExp.test for this CPU / OS combination."
#endif
void jitCompileInlinedTest(StackCheck* m_compilationThreadStackChecker, StringView patternString, OptionSet<Yarr::Flags> flags, CharSize charSize, VM* vm, YarrBoyerMooreData& boyerMooreData, CCallHelpers& jit, YarrJITRegisters& jitRegisters)
{
Yarr::ErrorCode errorCode;
Yarr::YarrPattern pattern(patternString, flags, errorCode);
if (errorCode != Yarr::ErrorCode::NoError) {
// This path cannot clobber jitRegisters.regT1 as it is needed for the slow path we'll end up in.
jit.move(MacroAssembler::TrustedImmPtr((void*)static_cast<size_t>(JSRegExpResult::JITCodeFailure)), jitRegisters.returnRegister);
return;
}
jitRegisters.validate();
YarrGenerator<YarrJITRegisters> yarrGenerator(jit, vm, &boyerMooreData, jitRegisters, pattern, patternString, charSize, JITCompileMode::InlineTest);
yarrGenerator.setStackChecker(m_compilationThreadStackChecker);
yarrGenerator.compileInline(boyerMooreData);
}
#endif
void YarrCodeBlock::dumpSimpleName(PrintStream& out) const
{
if (m_regExp)
RegExp::dumpToStream(m_regExp, out);
else
out.print("unspecified");
}
}}
#endif
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END