| /* |
| * Copyright (C) 2009-2023 Apple Inc. All rights reserved. |
| * Copyright (C) 2010 Peter Varga ([email protected]), University of Szeged |
| * Copyright (C) 2025 Tetsuharu Ohzeki <[email protected]>. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "YarrPattern.h" |
| |
| #include "Options.h" |
| #include "Yarr.h" |
| #include "YarrCanonicalize.h" |
| #include "YarrParser.h" |
| #include <limits> |
| #include <wtf/BitSet.h> |
| #include <wtf/DataLog.h> |
| #include <wtf/StackCheck.h> |
| #include <wtf/Vector.h> |
| |
| WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN |
| |
| namespace JSC { namespace Yarr { |
| |
| #include "RegExpJitTables.h" |
| |
| class CharacterClassConstructor { |
| public: |
| CharacterClassConstructor(bool isCaseInsensitive, CompileMode compileMode) |
| : m_isCaseInsensitive(isCaseInsensitive) |
| , m_anyCharacter(false) |
| , m_mayContainStrings(false) |
| , m_invertedStrings(false) |
| , m_compileMode(compileMode) |
| , m_characterWidths(CharacterClassWidths::Unknown) |
| , m_canonicalMode(compileMode == CompileMode::Legacy ? CanonicalMode::UCS2 : CanonicalMode::Unicode) |
| { |
| } |
| |
| void reset() |
| { |
| m_strings.clear(); |
| m_matches.clear(); |
| m_ranges.clear(); |
| m_matchesUnicode.clear(); |
| m_rangesUnicode.clear(); |
| m_setOp = CharacterClassSetOp::Default; |
| m_anyCharacter = false; |
| m_mayContainStrings = false; |
| m_invertedStrings = false; |
| m_characterWidths = CharacterClassWidths::Unknown; |
| } |
| |
| void combiningSetOp(CharacterClassSetOp setOp) |
| { |
| ASSERT(m_setOp == CharacterClassSetOp::Default || m_setOp == setOp); |
| m_setOp = setOp; |
| } |
| |
| void append(const CharacterClass* other) |
| { |
| if (m_setOp != CharacterClassSetOp::Default) { |
| performSetOpWith(other); |
| return; |
| } |
| |
| for (size_t i = 0; i < other->m_strings.size(); ++i) |
| m_strings.append(other->m_strings[i]); |
| for (size_t i = 0; i < other->m_matches.size(); ++i) |
| addSorted(m_matches, other->m_matches[i]); |
| for (size_t i = 0; i < other->m_ranges.size(); ++i) |
| addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end); |
| for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i) |
| addSorted(m_matchesUnicode, other->m_matchesUnicode[i]); |
| for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i) |
| addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end); |
| m_mayContainStrings |= other->hasStrings(); |
| } |
| |
| void appendInverted(const CharacterClass* other) |
| { |
| auto addSortedInverted = [&](char32_t min, char32_t max, |
| const Vector<char32_t>& srcMatches, const Vector<CharacterRange>& srcRanges, |
| Vector<char32_t>& destMatches, Vector<CharacterRange>& destRanges) { |
| |
| auto addSortedMatchOrRange = [&](char32_t lo, char32_t hiPlusOne) { |
| if (lo < hiPlusOne) { |
| if (lo + 1 == hiPlusOne) |
| addSorted(destMatches, lo); |
| else |
| addSortedRange(destRanges, lo, hiPlusOne - 1); |
| } |
| }; |
| |
| char32_t lo = min; |
| size_t matchesIndex = 0; |
| size_t rangesIndex = 0; |
| bool matchesRemaining = matchesIndex < srcMatches.size(); |
| bool rangesRemaining = rangesIndex < srcRanges.size(); |
| |
| if (!matchesRemaining && !rangesRemaining) { |
| addSortedMatchOrRange(min, max + 1); |
| return; |
| } |
| |
| while (matchesRemaining || rangesRemaining) { |
| char32_t hiPlusOne; |
| char32_t nextLo; |
| |
| if (matchesRemaining |
| && (!rangesRemaining || srcMatches[matchesIndex] < srcRanges[rangesIndex].begin)) { |
| hiPlusOne = srcMatches[matchesIndex]; |
| nextLo = hiPlusOne + 1; |
| ++matchesIndex; |
| matchesRemaining = matchesIndex < srcMatches.size(); |
| } else { |
| hiPlusOne = srcRanges[rangesIndex].begin; |
| nextLo = srcRanges[rangesIndex].end + 1; |
| ++rangesIndex; |
| rangesRemaining = rangesIndex < srcRanges.size(); |
| } |
| |
| addSortedMatchOrRange(lo, hiPlusOne); |
| |
| lo = nextLo; |
| } |
| |
| addSortedMatchOrRange(lo, max + 1); |
| }; |
| |
| if (other->hasStrings()) { |
| m_mayContainStrings = true; |
| m_invertedStrings = true; |
| } |
| |
| addSortedInverted(0, 0x7f, other->m_matches, other->m_ranges, m_matches, m_ranges); |
| addSortedInverted(0x80, UCHAR_MAX_VALUE, other->m_matchesUnicode, other->m_rangesUnicode, m_matchesUnicode, m_rangesUnicode); |
| } |
| |
| void putChar(char32_t ch) |
| { |
| if (!isUnionSetOp()) |
| return putCharNonUnion(ch); |
| |
| if (!m_isCaseInsensitive) { |
| addSorted(ch); |
| return; |
| } |
| |
| if (m_canonicalMode == CanonicalMode::UCS2 && isASCII(ch)) { |
| // Handle ASCII cases. |
| if (isASCIIAlpha(ch)) { |
| addSorted(m_matches, toASCIIUpper(ch)); |
| addSorted(m_matches, toASCIILower(ch)); |
| } else |
| addSorted(m_matches, ch); |
| return; |
| } |
| |
| // Add multiple matches, if necessary. |
| const CanonicalizationRange* info = canonicalRangeInfoFor(ch, m_canonicalMode); |
| if (info->type == CanonicalizeUnique) |
| addSorted(ch); |
| else |
| putUnicodeIgnoreCase(ch, info); |
| } |
| |
| void putCharNonUnion(char32_t ch) |
| { |
| Vector<char32_t> asciiMatches; |
| Vector<char32_t> unicodeMatches; |
| Vector<CharacterRange> emptyRanges; |
| |
| if (m_setOp == CharacterClassSetOp::Intersection) |
| m_strings.clear(); |
| |
| auto addChar = [&] (char32_t ch) { |
| if (isASCII(ch)) |
| asciiMatches.append(ch); |
| else |
| unicodeMatches.append(ch); |
| }; |
| |
| auto performOp = [&] () { |
| performSetOpWithMatches(asciiMatches, emptyRanges, unicodeMatches, emptyRanges); |
| }; |
| |
| if (!m_isCaseInsensitive) { |
| addChar(ch); |
| performOp(); |
| return; |
| } |
| |
| if (m_canonicalMode == CanonicalMode::UCS2 && isASCII(ch)) { |
| // Handle ASCII cases. |
| if (isASCIIAlpha(ch)) { |
| addChar(toASCIIUpper(ch)); |
| addChar(toASCIILower(ch)); |
| } else |
| addChar(ch); |
| performOp(); |
| return; |
| } |
| |
| // Add multiple matches, if necessary. |
| const CanonicalizationRange* info = canonicalRangeInfoFor(ch, m_canonicalMode); |
| if (info->type == CanonicalizeUnique) |
| addChar(ch); |
| else { |
| if (info->type == CanonicalizeSet) { |
| for (auto* set = canonicalCharacterSetInfo(info->value, m_canonicalMode); (ch = *set); ++set) |
| addChar(ch); |
| } else { |
| char32_t canonicalChar = getCanonicalPair(info, ch); |
| addChar(std::min(ch, canonicalChar)); |
| addChar(std::max(ch, canonicalChar)); |
| } |
| } |
| |
| performOp(); |
| } |
| |
| void putUnicodeIgnoreCase(char32_t ch, const CanonicalizationRange* info) |
| { |
| ASSERT(ch >= info->begin && ch <= info->end); |
| ASSERT(info->type != CanonicalizeUnique); |
| if (info->type == CanonicalizeSet) { |
| for (auto* set = canonicalCharacterSetInfo(info->value, m_canonicalMode); (ch = *set); ++set) |
| addSorted(ch); |
| } else { |
| addSorted(ch); |
| addSorted(getCanonicalPair(info, ch)); |
| } |
| } |
| |
| void putRange(char32_t lo, char32_t hi) |
| { |
| if (isASCII(lo)) { |
| char asciiLo = lo; |
| char asciiHi = std::min<char32_t>(hi, 0x7f); |
| addSortedRange(m_ranges, lo, asciiHi); |
| |
| if (m_isCaseInsensitive) { |
| if ((asciiLo <= 'Z') && (asciiHi >= 'A')) |
| addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A')); |
| if ((asciiLo <= 'z') && (asciiHi >= 'a')) |
| addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a')); |
| } |
| } |
| if (isASCII(hi)) |
| return; |
| |
| lo = std::max<char32_t>(lo, 0x80); |
| addSortedRange(m_rangesUnicode, lo, hi); |
| |
| if (!m_isCaseInsensitive) |
| return; |
| |
| const CanonicalizationRange* info = canonicalRangeInfoFor(lo, m_canonicalMode); |
| while (true) { |
| // Handle the range [lo .. end] |
| char32_t end = std::min<char32_t>(info->end, hi); |
| |
| switch (info->type) { |
| case CanonicalizeUnique: |
| // Nothing to do - no canonical equivalents. |
| break; |
| case CanonicalizeSet: { |
| char16_t ch; |
| for (auto* set = canonicalCharacterSetInfo(info->value, m_canonicalMode); (ch = *set); ++set) |
| addSorted(ch); |
| break; |
| } |
| case CanonicalizeRangeLo: |
| addSortedRange(lo + info->value, end + info->value); |
| break; |
| case CanonicalizeRangeHi: |
| addSortedRange(lo - info->value, end - info->value); |
| break; |
| case CanonicalizeAlternatingAligned: |
| // Use addSortedRange since there is likely an abutting range to combine with. |
| if (lo & 1) |
| addSortedRange(lo - 1, lo - 1); |
| if (!(end & 1)) |
| addSortedRange(end + 1, end + 1); |
| break; |
| case CanonicalizeAlternatingUnaligned: |
| // Use addSortedRange since there is likely an abutting range to combine with. |
| if (!(lo & 1)) |
| addSortedRange(lo - 1, lo - 1); |
| if (end & 1) |
| addSortedRange(end + 1, end + 1); |
| break; |
| } |
| |
| if (hi == end) |
| return; |
| |
| ++info; |
| lo = info->begin; |
| } |
| } |
| |
| void atomClassStringDisjunction(Vector<Vector<char32_t>>& disjunctionStrings) |
| { |
| Vector<Vector<char32_t>> utf32Strings; |
| Vector<char32_t> matches; |
| Vector<char32_t> matchesUnicode; |
| Vector<CharacterRange> emptyRanges; |
| |
| sort(disjunctionStrings); |
| |
| auto addCh = [&](char32_t ch) { |
| if (isASCII(ch)) |
| matches.append(ch); |
| else |
| matchesUnicode.append(ch); |
| }; |
| |
| for (auto string : disjunctionStrings) { |
| if (string.size() == 1) { |
| char32_t ch = string[0]; |
| if (!m_isCaseInsensitive) { |
| addCh(ch); |
| continue; |
| } |
| |
| // Add multiple matches, if necessary. |
| const CanonicalizationRange* info = canonicalRangeInfoFor(ch, m_canonicalMode); |
| if (info->type == CanonicalizeUnique) |
| addCh(ch); |
| else { |
| if (info->type == CanonicalizeSet) { |
| for (auto* set = canonicalCharacterSetInfo(info->value, m_canonicalMode); (ch = *set); ++set) |
| addCh(ch); |
| } else { |
| addCh(ch); |
| addCh(getCanonicalPair(info, ch)); |
| } |
| } |
| continue; |
| } |
| |
| utf32Strings.append(string); |
| } |
| |
| performSetOpWithStrings(utf32Strings); |
| performSetOpWithMatches(matches, emptyRanges, matchesUnicode, emptyRanges); |
| } |
| |
| void invertMatches() |
| { |
| if (!m_strings.isEmpty()) |
| m_invertedStrings = true; |
| |
| asciiInvert(); |
| unicodeInvert(); |
| } |
| |
| void performSetOpWith(CharacterClassConstructor* rhs) |
| { |
| performSetOpWithStrings(rhs->m_strings); |
| performSetOpWithMatches(rhs->m_matches, rhs->m_ranges, rhs->m_matchesUnicode, rhs->m_rangesUnicode); |
| } |
| |
| void performSetOpWith(const CharacterClass* rhs) |
| { |
| performSetOpWithStrings(rhs->m_strings); |
| performSetOpWithMatches(rhs->m_matches, rhs->m_ranges, rhs->m_matchesUnicode, rhs->m_rangesUnicode); |
| } |
| |
| void performSetOpWithStrings(const Vector<Vector<char32_t>>& utf32Strings) |
| { |
| if (m_compileMode != CompileMode::UnicodeSets) |
| return; |
| |
| switch (m_setOp) { |
| case CharacterClassSetOp::Default: |
| case CharacterClassSetOp::Union: |
| unionStrings(utf32Strings); |
| break; |
| |
| case CharacterClassSetOp::Intersection: |
| intersectionStrings(utf32Strings); |
| break; |
| |
| case CharacterClassSetOp::Subtraction: |
| subtractionStrings(utf32Strings); |
| break; |
| } |
| } |
| |
| void performSetOpWithMatches(const Vector<char32_t>& rhsMatches, const Vector<CharacterRange>& rhsRanges, const Vector<char32_t>& rhsMatchesUnicode, const Vector<CharacterRange>& rhsRangesUnicode) |
| { |
| if (m_compileMode != CompileMode::UnicodeSets) |
| return; |
| |
| asciiOp(rhsMatches, rhsRanges); |
| // Sort the incoming Unicode matches, since Unicode case folding canonicalization may cause |
| // characters to be added to rhsMatches out of code point order. |
| Vector<char32_t> rhsSortedMatchesUnicode(rhsMatchesUnicode); |
| std::ranges::sort(rhsSortedMatchesUnicode); |
| |
| unicodeOpSorted(rhsSortedMatchesUnicode, rhsRangesUnicode); |
| } |
| |
| bool hasInvertedStrings() |
| { |
| return m_invertedStrings; |
| } |
| |
| static ALWAYS_INLINE int compareUTF32Strings(const Vector<char32_t>& a, const Vector<char32_t>& b) |
| { |
| // Longer strings before shorter. |
| if (a.size() > b.size()) |
| return -1; |
| |
| if (a.size() < b.size()) |
| return 1; |
| |
| // Lexically sort for same length strings. |
| for (unsigned i = 0; i < a.size(); ++i) { |
| if (a[i] != b[i]) |
| return (a[i] < b[i]) ? -1 : 1; |
| } |
| |
| return 0; |
| } |
| |
| static void sort(Vector<Vector<char32_t>>& utf32Strings) |
| { |
| std::ranges::sort(utf32Strings, [](const auto& a, const auto& b) { |
| return compareUTF32Strings(a, b) < 0; |
| }); |
| } |
| |
| std::unique_ptr<CharacterClass> charClass() |
| { |
| coalesceTables(); |
| |
| if (!m_strings.isEmpty()) |
| sort(m_strings); |
| |
| auto characterClass = makeUnique<CharacterClass>(); |
| |
| characterClass->m_strings.swap(m_strings); |
| characterClass->m_matches.swap(m_matches); |
| characterClass->m_ranges.swap(m_ranges); |
| characterClass->m_matchesUnicode.swap(m_matchesUnicode); |
| characterClass->m_rangesUnicode.swap(m_rangesUnicode); |
| characterClass->m_anyCharacter = anyCharacter(); |
| characterClass->m_characterWidths = characterWidths(); |
| |
| m_anyCharacter = false; |
| m_characterWidths = CharacterClassWidths::Unknown; |
| |
| return characterClass; |
| } |
| |
| void setIsCaseInsensitive(bool ignoreCase) |
| { |
| m_isCaseInsensitive = ignoreCase; |
| } |
| |
| private: |
| void addSorted(char32_t ch) |
| { |
| addSorted(isASCII(ch) ? m_matches : m_matchesUnicode, ch); |
| } |
| |
| void addSorted(Vector<char32_t>& matches, char32_t ch) |
| { |
| unsigned pos = 0; |
| unsigned range = matches.size(); |
| |
| m_characterWidths |= (U_IS_BMP(ch) ? CharacterClassWidths::HasBMPChars : CharacterClassWidths::HasNonBMPChars); |
| |
| // binary chop, find position to insert char. |
| while (range) { |
| unsigned index = range >> 1; |
| |
| int val = matches[pos+index] - ch; |
| if (!val) |
| return; |
| else if (val > 0) { |
| if (val == 1) { |
| char32_t lo = ch; |
| char32_t hi = ch + 1; |
| matches.removeAt(pos + index); |
| if (pos + index > 0 && matches[pos + index - 1] == ch - 1) { |
| lo = ch - 1; |
| matches.removeAt(pos + index - 1); |
| } |
| addSortedRange(isASCII(ch) ? m_ranges : m_rangesUnicode, lo, hi); |
| return; |
| } |
| range = index; |
| } else { |
| if (val == -1) { |
| char32_t lo = ch - 1; |
| char32_t hi = ch; |
| matches.removeAt(pos + index); |
| if (pos + index + 1 < matches.size() && matches[pos + index + 1] == ch + 1) { |
| hi = ch + 1; |
| matches.removeAt(pos + index + 1); |
| } |
| addSortedRange(isASCII(ch) ? m_ranges : m_rangesUnicode, lo, hi); |
| return; |
| } |
| pos += (index+1); |
| range -= (index+1); |
| } |
| } |
| |
| if (pos == matches.size()) |
| matches.append(ch); |
| else |
| matches.insert(pos, ch); |
| } |
| |
| void addSortedRange(Vector<CharacterRange>& ranges, char32_t lo, char32_t hi) |
| { |
| size_t end = ranges.size(); |
| |
| if (U_IS_BMP(lo)) |
| m_characterWidths |= CharacterClassWidths::HasBMPChars; |
| if (!U_IS_BMP(hi)) |
| m_characterWidths |= CharacterClassWidths::HasNonBMPChars; |
| |
| // Simple linear scan - I doubt there are that many ranges anyway... |
| // feel free to fix this with something faster (eg binary chop). |
| for (size_t i = 0; i < end; ++i) { |
| // does the new range fall before the current position in the array |
| if (hi < ranges[i].begin) { |
| // Concatenate appending ranges. |
| if (hi == (ranges[i].begin - 1)) { |
| ranges[i].begin = lo; |
| return; |
| } |
| ranges.insert(i, CharacterRange(lo, hi)); |
| return; |
| } |
| // Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining |
| // If the new range start at or before the end of the last range, then the overlap (if it starts one after the |
| // end of the last range they concatenate, which is just as good. |
| if (lo <= (ranges[i].end + 1)) { |
| // found an intersect! we'll replace this entry in the array. |
| ranges[i].begin = std::min(ranges[i].begin, lo); |
| ranges[i].end = std::max(ranges[i].end, hi); |
| |
| mergeRangesFrom(ranges, i); |
| return; |
| } |
| } |
| |
| // CharacterRange comes after all existing ranges. |
| ranges.append(CharacterRange(lo, hi)); |
| } |
| |
| |
| void addSortedRange(char32_t lo, char32_t hi) |
| { |
| if (isASCII(lo)) { |
| addSortedRange(m_ranges, lo, std::min<char32_t>(hi, 0x7f)); |
| if (isASCII(hi)) |
| return; |
| lo = 0x80; |
| } |
| addSortedRange(m_rangesUnicode, lo, hi); |
| } |
| |
| void mergeRangesFrom(Vector<CharacterRange>& ranges, size_t index) |
| { |
| unsigned next = index + 1; |
| |
| // each iteration of the loop we will either remove something from the list, or break out of the loop. |
| while (next < ranges.size()) { |
| if (ranges[next].begin <= (ranges[index].end + 1)) { |
| // the next entry now overlaps / concatenates with this one. |
| ranges[index].end = std::max(ranges[index].end, ranges[next].end); |
| ranges.removeAt(next); |
| } else |
| break; |
| } |
| } |
| |
| void unionStrings(const Vector<Vector<char32_t>>& rhsStrings) |
| { |
| // result should include strings in either the LHS or RHS |
| Vector<Vector<char32_t>> result; |
| size_t lhsIndex = 0; |
| size_t rhsIndex = 0; |
| |
| while (lhsIndex < m_strings.size() && rhsIndex < rhsStrings.size()) { |
| auto lhsString = m_strings[lhsIndex]; |
| auto rhsString = rhsStrings[rhsIndex]; |
| |
| auto strCompare = compareUTF32Strings(lhsString, rhsString); |
| if (strCompare <= 0) { |
| result.append(lhsString); |
| lhsIndex++; |
| if (!strCompare) |
| rhsIndex++; |
| } else { |
| result.append(rhsString); |
| rhsIndex++; |
| } |
| } |
| |
| // One of LHS or RHS has been exhausted, add the remaining strings. |
| while (lhsIndex < m_strings.size()) |
| result.append(m_strings[lhsIndex++]); |
| |
| while (rhsIndex < rhsStrings.size()) |
| result.append(rhsStrings[rhsIndex++]); |
| |
| m_strings.swap(result); |
| m_mayContainStrings = !m_strings.isEmpty(); |
| } |
| |
| void intersectionStrings(const Vector<Vector<char32_t>>& rhsStrings) |
| { |
| // result should include strings that are in both the LHS and RHS. |
| Vector<Vector<char32_t>> result; |
| size_t lhsIndex = 0; |
| size_t rhsIndex = 0; |
| |
| while (lhsIndex < m_strings.size() && rhsIndex < rhsStrings.size()) { |
| auto lhsString = m_strings[lhsIndex]; |
| auto rhsString = rhsStrings[rhsIndex]; |
| |
| auto strCompare = compareUTF32Strings(lhsString, rhsString); |
| if (!strCompare) { |
| result.append(lhsString); |
| lhsIndex++; |
| rhsIndex++; |
| } else if (strCompare < 0) |
| lhsIndex++; |
| else |
| rhsIndex++; |
| } |
| |
| m_strings.swap(result); |
| m_mayContainStrings = !m_strings.isEmpty(); |
| } |
| |
| void subtractionStrings(const Vector<Vector<char32_t>>& rhsStrings) |
| { |
| // result should include strings in LHS that are not in RHS. |
| Vector<Vector<char32_t>> result; |
| size_t lhsIndex = 0; |
| size_t rhsIndex = 0; |
| |
| while (lhsIndex < m_strings.size() && rhsIndex < rhsStrings.size()) { |
| auto lhsString = m_strings[lhsIndex]; |
| auto rhsString = rhsStrings[rhsIndex]; |
| |
| auto strCompare = compareUTF32Strings(lhsString, rhsString); |
| if (!strCompare) { |
| lhsIndex++; |
| rhsIndex++; |
| } else if (strCompare < 0) { |
| result.append(lhsString); |
| lhsIndex++; |
| } else |
| rhsIndex++; |
| } |
| |
| // Add any remaining LHS strings. |
| while (lhsIndex < m_strings.size()) |
| result.append(m_strings[lhsIndex++]); |
| |
| m_strings.swap(result); |
| m_mayContainStrings = !m_strings.isEmpty(); |
| } |
| |
| void asciiOp(const Vector<char32_t>& rhsMatches, const Vector<CharacterRange>& rhsRanges) |
| { |
| Vector<char32_t> resultMatches; |
| Vector<CharacterRange> resultRanges; |
| WTF::BitSet<0x80> lhsASCIIBitSet; |
| WTF::BitSet<0x80> rhsASCIIBitSet; |
| |
| for (auto match : m_matches) |
| lhsASCIIBitSet.set(match); |
| |
| for (auto range : m_ranges) { |
| for (char32_t ch = range.begin; ch <= range.end; ch++) |
| lhsASCIIBitSet.set(ch); |
| } |
| |
| for (auto match : rhsMatches) |
| rhsASCIIBitSet.set(match); |
| |
| for (auto range : rhsRanges) { |
| for (char32_t ch = range.begin; ch <= range.end; ch++) |
| rhsASCIIBitSet.set(ch); |
| } |
| |
| switch (m_setOp) { |
| case CharacterClassSetOp::Default: |
| case CharacterClassSetOp::Union: |
| lhsASCIIBitSet.merge(rhsASCIIBitSet); |
| break; |
| |
| case CharacterClassSetOp::Intersection: |
| lhsASCIIBitSet.filter(rhsASCIIBitSet); |
| break; |
| |
| case CharacterClassSetOp::Subtraction: |
| lhsASCIIBitSet.exclude(rhsASCIIBitSet); |
| break; |
| } |
| |
| bool firstCharUnset = true; |
| char32_t lo = 0; |
| char32_t hi = 0; |
| |
| auto addCharToResults = [&]() { |
| if (lo == hi) |
| resultMatches.append(lo); |
| else |
| resultRanges.append(CharacterRange(lo, hi)); |
| }; |
| |
| for (auto setVal : lhsASCIIBitSet) { |
| char32_t ch = setVal; |
| if (firstCharUnset) { |
| lo = hi = ch; |
| firstCharUnset = false; |
| } else { |
| if (ch == hi + 1) |
| hi = ch; |
| else { |
| addCharToResults(); |
| lo = hi = ch; |
| } |
| } |
| } |
| |
| if (!firstCharUnset) |
| addCharToResults(); |
| |
| m_matches.swap(resultMatches); |
| m_ranges.swap(resultRanges); |
| } |
| |
| void asciiInvert() |
| { |
| Vector<char32_t> resultMatches; |
| Vector<CharacterRange> resultRanges; |
| WTF::BitSet<0x80> ASCIIBitSet; |
| |
| for (auto match : m_matches) |
| ASCIIBitSet.set(match); |
| |
| for (auto range : m_ranges) { |
| for (char32_t ch = range.begin; ch <= range.end; ch++) |
| ASCIIBitSet.set(ch); |
| } |
| |
| ASCIIBitSet.invert(); |
| |
| bool firstCharUnset = true; |
| char32_t lo = 0; |
| char32_t hi = 0; |
| |
| auto addCharToResults = [&]() { |
| if (lo == hi) |
| resultMatches.append(lo); |
| else |
| resultRanges.append(CharacterRange(lo, hi)); |
| }; |
| |
| for (auto setVal : ASCIIBitSet) { |
| char32_t ch = setVal; |
| if (firstCharUnset) { |
| lo = hi = ch; |
| firstCharUnset = false; |
| } else { |
| if (ch == hi + 1) |
| hi = ch; |
| else { |
| addCharToResults(); |
| lo = hi = ch; |
| } |
| } |
| } |
| |
| if (!firstCharUnset) |
| addCharToResults(); |
| |
| m_matches.swap(resultMatches); |
| m_ranges.swap(resultRanges); |
| } |
| |
| void unicodeOpSorted(const Vector<char32_t>& rhsMatchesUnicode, const Vector<CharacterRange>& rhsRangesUnicode) |
| { |
| Vector<char32_t> resultMatches; |
| Vector<CharacterRange> resultRanges; |
| |
| constexpr size_t chunkSize = 2048; |
| WTF::BitSet<chunkSize> lhsChunkBitSet; |
| WTF::BitSet<chunkSize> rhsChunkBitSet; |
| |
| char32_t chunkLo = INT_MAX, chunkHi; |
| |
| size_t lhsMatchIndex = 0; |
| size_t lhsRangeIndex = 0; |
| size_t rhsMatchIndex = 0; |
| size_t rhsRangeIndex = 0; |
| |
| if (!m_matchesUnicode.isEmpty()) |
| chunkLo = std::min(chunkLo, m_matchesUnicode[0]); |
| |
| if (!m_rangesUnicode.isEmpty()) |
| chunkLo = std::min(chunkLo, m_rangesUnicode[0].begin); |
| |
| if (!rhsMatchesUnicode.isEmpty()) |
| chunkLo = std::min(chunkLo, rhsMatchesUnicode[0]); |
| |
| if (!rhsRangesUnicode.isEmpty()) |
| chunkLo = std::min(chunkLo, rhsRangesUnicode[0].begin); |
| |
| // If both the LHS and RHS are empty, bail out. |
| if (chunkLo == INT_MAX) |
| return; |
| |
| while (lhsMatchIndex < m_matchesUnicode.size() || lhsRangeIndex < m_rangesUnicode.size() || rhsMatchIndex < rhsMatchesUnicode.size() || rhsRangeIndex < rhsRangesUnicode.size()) { |
| if (rhsMatchIndex >= rhsMatchesUnicode.size() && rhsRangeIndex > rhsRangesUnicode.size() && m_setOp == CharacterClassSetOp::Intersection) { |
| // RHS is exhausted, we can short cut from here. Can't intersect anything more so bail out. |
| break; |
| } |
| |
| chunkHi = chunkLo + chunkSize - 1; |
| |
| for (; lhsMatchIndex < m_matchesUnicode.size(); ++lhsMatchIndex) { |
| char32_t ch = m_matchesUnicode[lhsMatchIndex]; |
| if (ch > chunkHi) |
| break; |
| |
| ASSERT(ch >= chunkLo); |
| lhsChunkBitSet.set(ch - chunkLo); |
| } |
| |
| for (; lhsRangeIndex < m_rangesUnicode.size(); ++lhsRangeIndex) { |
| auto range = m_rangesUnicode[lhsRangeIndex]; |
| if (range.begin > chunkHi) |
| break; |
| |
| auto begin = std::max(chunkLo, range.begin); |
| auto end = std::min(range.end, chunkHi); |
| |
| for (char32_t ch = begin; ch <= end; ch++) { |
| ASSERT(ch >= chunkLo); |
| lhsChunkBitSet.set(ch - chunkLo); |
| } |
| |
| if (range.end > chunkHi) |
| break; |
| } |
| |
| for (; rhsMatchIndex < rhsMatchesUnicode.size(); ++rhsMatchIndex) { |
| char32_t ch = rhsMatchesUnicode[rhsMatchIndex]; |
| if (ch > chunkHi) |
| break; |
| |
| ASSERT(ch >= chunkLo); |
| rhsChunkBitSet.set(ch - chunkLo); |
| } |
| |
| for (; rhsRangeIndex < rhsRangesUnicode.size(); ++rhsRangeIndex) { |
| auto range = rhsRangesUnicode[rhsRangeIndex]; |
| if (range.begin > chunkHi) |
| break; |
| |
| auto begin = std::max(chunkLo, range.begin); |
| auto end = std::min(range.end, chunkHi); |
| |
| for (char32_t ch = begin; ch <= end; ch++) { |
| ASSERT(ch >= chunkLo); |
| rhsChunkBitSet.set(ch - chunkLo); |
| } |
| |
| if (range.end > chunkHi) |
| break; |
| } |
| |
| switch (m_setOp) { |
| case CharacterClassSetOp::Default: |
| case CharacterClassSetOp::Union: |
| lhsChunkBitSet.merge(rhsChunkBitSet); |
| break; |
| |
| case CharacterClassSetOp::Intersection: |
| lhsChunkBitSet.filter(rhsChunkBitSet); |
| break; |
| |
| case CharacterClassSetOp::Subtraction: |
| lhsChunkBitSet.exclude(rhsChunkBitSet); |
| break; |
| } |
| |
| bool firstCharUnset = true; |
| char32_t lo = 0; |
| char32_t hi = 0; |
| |
| auto addCharToResults = [&]() { |
| if (lo == hi) |
| resultMatches.append(lo); |
| else { |
| // Coalesce the prior range with the new (lo, hi) range if they are adjacent. |
| if (resultRanges.size() > 0) { |
| auto lastIndex = resultRanges.size() - 1; |
| if (resultRanges[lastIndex].end + 1 == lo) { |
| resultRanges[lastIndex].end = hi; |
| return; |
| } |
| } |
| |
| resultRanges.append(CharacterRange(lo, hi)); |
| } |
| }; |
| |
| for (auto setVal : lhsChunkBitSet) { |
| char32_t ch = static_cast<char32_t>(setVal) + chunkLo; |
| if (firstCharUnset) { |
| lo = hi = ch; |
| firstCharUnset = false; |
| } else { |
| if (ch == hi + 1) |
| hi = ch; |
| else { |
| addCharToResults(); |
| lo = hi = ch; |
| } |
| } |
| } |
| |
| if (!firstCharUnset) |
| addCharToResults(); |
| |
| chunkLo = chunkHi + 1; |
| lhsChunkBitSet.clearAll(); |
| rhsChunkBitSet.clearAll(); |
| } |
| |
| m_matchesUnicode.swap(resultMatches); |
| m_rangesUnicode.swap(resultRanges); |
| } |
| |
| void unicodeInvert() |
| { |
| auto currentSetOp = m_setOp; |
| m_setOp = CharacterClassSetOp::Subtraction; |
| |
| Vector<char32_t> matches { }; |
| Vector<CharacterRange> ranges { |
| CharacterRange(0x0080, UCHAR_MAX_VALUE) |
| }; |
| |
| std::swap(m_matchesUnicode, matches); |
| std::swap(m_rangesUnicode, ranges); |
| |
| unicodeOpSorted(matches, ranges); |
| |
| m_setOp = currentSetOp; |
| } |
| |
| void coalesceTables() |
| { |
| auto coalesceMatchesAndRanges = [&](Vector<char32_t>& matches, Vector<CharacterRange>& ranges) { |
| |
| size_t matchesIndex = 0; |
| size_t rangesIndex = 0; |
| |
| while (matchesIndex < matches.size() && rangesIndex < ranges.size()) { |
| if (ranges[rangesIndex].begin) { |
| while (matchesIndex < matches.size() && matches[matchesIndex] < ranges[rangesIndex].begin - 1) |
| matchesIndex++; |
| |
| if (matchesIndex < matches.size() && matches[matchesIndex] == ranges[rangesIndex].begin - 1) { |
| ranges[rangesIndex].begin = matches[matchesIndex]; |
| matches.removeAt(matchesIndex); |
| } |
| } |
| |
| while (matchesIndex < matches.size() && matches[matchesIndex] < ranges[rangesIndex].end + 1) |
| matchesIndex++; |
| |
| if (matchesIndex < matches.size()) { |
| if (matches[matchesIndex] > ranges[rangesIndex].end + 1) { |
| rangesIndex++; |
| continue; |
| } |
| |
| if (matches[matchesIndex] == ranges[rangesIndex].end + 1) { |
| ranges[rangesIndex].end = matches[matchesIndex]; |
| matches.removeAt(matchesIndex); |
| |
| mergeRangesFrom(ranges, rangesIndex); |
| } else |
| matchesIndex++; |
| } |
| } |
| |
| if (ranges.size() > 1) { |
| for (auto rangesIndex = ranges.size() - 1; rangesIndex > 0; rangesIndex--) { |
| if (ranges[rangesIndex].begin == ranges[rangesIndex - 1].end + 1) { |
| ranges[rangesIndex - 1].end = ranges[rangesIndex].end; |
| ranges.removeAt(rangesIndex); |
| } |
| } |
| } |
| }; |
| |
| coalesceMatchesAndRanges(m_matches, m_ranges); |
| coalesceMatchesAndRanges(m_matchesUnicode, m_rangesUnicode); |
| |
| if (!m_matches.size() && !m_matchesUnicode.size() |
| && m_ranges.size() == 1 && m_rangesUnicode.size() == 1 |
| && m_ranges[0].begin == 0 && m_ranges[0].end == 0x7f |
| && m_rangesUnicode[0].begin == 0x80 && m_rangesUnicode[0].end == UCHAR_MAX_VALUE) |
| m_anyCharacter = true; |
| } |
| |
| bool hasNonBMPCharacters() |
| { |
| return m_characterWidths & CharacterClassWidths::HasNonBMPChars; |
| } |
| |
| CharacterClassWidths characterWidths() |
| { |
| return m_characterWidths; |
| } |
| |
| bool anyCharacter() |
| { |
| return m_anyCharacter; |
| } |
| |
| bool isUnionSetOp() { return m_setOp == CharacterClassSetOp::Default || m_setOp == CharacterClassSetOp::Union; } |
| |
| bool m_isCaseInsensitive : 1; |
| bool m_anyCharacter : 1; |
| bool m_mayContainStrings : 1; |
| bool m_invertedStrings : 1; |
| |
| CharacterClassSetOp m_setOp { CharacterClassSetOp::Default }; |
| CompileMode m_compileMode; |
| CharacterClassWidths m_characterWidths; |
| |
| CanonicalMode m_canonicalMode; |
| |
| Vector<Vector<char32_t>> m_strings; |
| Vector<char32_t> m_matches; |
| Vector<CharacterRange> m_ranges; |
| Vector<char32_t> m_matchesUnicode; |
| Vector<CharacterRange> m_rangesUnicode; |
| }; |
| |
| class YarrPatternConstructor { |
| class UnresolvedForwardReference { |
| public: |
| UnresolvedForwardReference(PatternAlternative* alternative, unsigned termIndex) |
| : m_alternative(alternative) |
| , m_termIndex(termIndex) |
| , m_namedGroup(String()) |
| { |
| } |
| |
| UnresolvedForwardReference(PatternAlternative* alternative, unsigned termIndex, const String namedGroup) |
| : m_alternative(alternative) |
| , m_termIndex(termIndex) |
| , m_namedGroup(namedGroup) |
| { |
| } |
| |
| PatternTerm* term() |
| { |
| return &m_alternative->m_terms[m_termIndex]; |
| } |
| |
| bool hasNamedGroup() |
| { |
| return !m_namedGroup.isNull(); |
| } |
| |
| const String namedGroup() |
| { |
| return m_namedGroup; |
| } |
| |
| private: |
| PatternAlternative* m_alternative; |
| unsigned m_termIndex; |
| const String m_namedGroup; |
| }; |
| |
| public: |
| YarrPatternConstructor(YarrPattern& pattern, OptionSet<Flags> flags) |
| : m_pattern(pattern) |
| , m_baseCharacterClassConstructor(pattern.ignoreCase(), pattern.compileMode()) |
| , m_initialFlags(flags) |
| { |
| m_currentCharacterClassConstructor = &m_baseCharacterClassConstructor; |
| auto body = makeUnique<PatternDisjunction>(); |
| m_pattern.m_body = body.get(); |
| m_alternative = body->addNewAlternative(); |
| m_pattern.m_disjunctions.append(WTFMove(body)); |
| |
| m_flags = m_initialFlags; |
| m_parenthesisContext.setFlags(m_initialFlags); |
| } |
| |
| ~YarrPatternConstructor() |
| { |
| } |
| |
| void resetForReparsing() |
| { |
| m_pattern.resetForReparsing(); |
| m_baseCharacterClassConstructor.reset(); |
| m_currentCharacterClassConstructor = &m_baseCharacterClassConstructor; |
| m_error = ErrorCode::NoError; |
| m_parenthesisContext.reset(); |
| m_parenthesisContext.setFlags(m_flags); |
| m_forwardReferencesInLookbehind.clear(); |
| |
| auto body = makeUnique<PatternDisjunction>(); |
| m_pattern.m_body = body.get(); |
| m_alternative = body->addNewAlternative(); |
| m_pattern.m_disjunctions.append(WTFMove(body)); |
| |
| m_flags = m_initialFlags; |
| } |
| |
| void addCaptureGroupForName(const String groupName, unsigned subpatternId) |
| { |
| ASSERT(subpatternId); |
| |
| m_pattern.m_hasNamedCaptureGroups = true; |
| |
| auto addResult = m_pattern.m_namedGroupToParenIndices.add(groupName, Vector<unsigned>()); |
| auto& thisGroupNameSubpatternIds = addResult.iterator->value; |
| if (addResult.isNewEntry) { |
| while (m_pattern.m_captureGroupNames.size() < subpatternId) |
| m_pattern.m_captureGroupNames.append(String()); |
| m_pattern.m_captureGroupNames.append(groupName); |
| |
| thisGroupNameSubpatternIds.append(subpatternId); |
| } else if (thisGroupNameSubpatternIds.size() == 2) { |
| // This named group is now a duplicate. |
| thisGroupNameSubpatternIds[0] = ++m_pattern.m_numDuplicateNamedCaptureGroups; |
| } |
| |
| thisGroupNameSubpatternIds.append(subpatternId); |
| } |
| |
| void tryConvertingForwardReferencesToBackreferences() |
| { |
| // There are forward references that could actually be lookbehind back references. |
| for (unsigned i = 0; i < m_forwardReferencesInLookbehind.size(); ++i) { |
| UnresolvedForwardReference& unresolvedForwardReference = m_forwardReferencesInLookbehind[i]; |
| auto term = unresolvedForwardReference.term(); |
| if (unresolvedForwardReference.hasNamedGroup()) { |
| auto namedGroupIndicesIter = m_pattern.m_namedGroupToParenIndices.find(unresolvedForwardReference.namedGroup()); |
| if (namedGroupIndicesIter == m_pattern.m_namedGroupToParenIndices.end()) |
| continue; |
| |
| unsigned namedGroupSubpatternId = namedGroupIndicesIter->value.last(); |
| if (namedGroupSubpatternId == term->backReferenceSubpatternId) { |
| term->backReferenceSubpatternId = 0; |
| continue; |
| } |
| term->backReferenceSubpatternId = namedGroupSubpatternId; |
| term->convertToBackreference(); |
| m_pattern.m_containsBackreferences = true; |
| } else if (term->backReferenceSubpatternId && term->backReferenceSubpatternId <= m_pattern.m_numSubpatterns) { |
| term->convertToBackreference(); |
| m_pattern.m_containsBackreferences = true; |
| } |
| } |
| |
| m_forwardReferencesInLookbehind.clear(); |
| } |
| |
| void assertionBOL() |
| { |
| if (!m_alternative->m_terms.size() && !parenthesisInvert() && parenthesisMatchDirection() == Forward) { |
| m_alternative->m_startsWithBOL = true; |
| m_alternative->m_containsBOL = true; |
| m_pattern.m_containsBOL = true; |
| } |
| |
| auto bolTerm = PatternTerm::BOL(m_flags); |
| bolTerm.setMatchDirection(parenthesisMatchDirection()); |
| m_alternative->m_terms.append(bolTerm); |
| } |
| void assertionEOL() |
| { |
| m_alternative->m_terms.append(PatternTerm::EOL(m_flags)); |
| } |
| void assertionWordBoundary(bool invert) |
| { |
| m_alternative->m_terms.append(PatternTerm::WordBoundary(invert, m_flags)); |
| } |
| |
| void atomPatternCharacter(char32_t ch, bool) |
| { |
| // We handle case-insensitive checking of unicode characters which do have both |
| // cases by handling them as if they were defined using a CharacterClass. |
| if (!ignoreCase() || (isASCII(ch) && !m_pattern.eitherUnicode())) { |
| m_alternative->m_terms.append(PatternTerm(ch, m_flags, parenthesisMatchDirection())); |
| return; |
| } |
| |
| const CanonicalizationRange* info = canonicalRangeInfoFor(ch, m_pattern.eitherUnicode() ? CanonicalMode::Unicode : CanonicalMode::UCS2); |
| if (info->type == CanonicalizeUnique) { |
| m_alternative->m_terms.append(PatternTerm(ch, m_flags, parenthesisMatchDirection())); |
| return; |
| } |
| |
| m_currentCharacterClassConstructor->putUnicodeIgnoreCase(ch, info); |
| auto newCharacterClass = m_currentCharacterClassConstructor->charClass(); |
| m_alternative->m_terms.append(PatternTerm(newCharacterClass.get(), false, m_flags, parenthesisMatchDirection())); |
| m_pattern.m_userCharacterClasses.append(WTFMove(newCharacterClass)); |
| } |
| |
| void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert) |
| { |
| switch (classID) { |
| case BuiltInCharacterClassID::DigitClassID: |
| m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert, m_flags, parenthesisMatchDirection())); |
| break; |
| case BuiltInCharacterClassID::SpaceClassID: |
| m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert, m_flags, parenthesisMatchDirection())); |
| break; |
| case BuiltInCharacterClassID::WordClassID: |
| if (m_pattern.eitherUnicode() && ignoreCase()) |
| m_alternative->m_terms.append(PatternTerm(m_pattern.wordUnicodeIgnoreCaseCharCharacterClass(), invert, m_flags, parenthesisMatchDirection())); |
| else |
| m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert, m_flags, parenthesisMatchDirection())); |
| break; |
| case BuiltInCharacterClassID::DotClassID: |
| ASSERT(!invert); |
| if (dotAll()) |
| m_alternative->m_terms.append(PatternTerm(m_pattern.anyCharacterClass(), false, m_flags, parenthesisMatchDirection())); |
| else |
| m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), true, m_flags, parenthesisMatchDirection())); |
| break; |
| default: { |
| if (characterClassMayContainStrings(classID)) { |
| auto characterClass = m_pattern.unicodeCharacterClassFor(classID); |
| if (characterClass->hasStrings()) { |
| atomParenthesesSubpatternBegin(false); |
| unsigned alternativeCount = 0; |
| for (unsigned i = 0; i < characterClass->m_strings.size(); ++i) { |
| if (alternativeCount) |
| disjunction(CreateDisjunctionPurpose::ForNextAlternative); |
| |
| auto string = characterClass->m_strings[i]; |
| |
| for (auto ch : string) |
| atomPatternCharacter(ch, /* hyphenIsRange */ false); |
| |
| ++alternativeCount; |
| } |
| |
| if (characterClass->hasSingleCharacters()) { |
| if (alternativeCount) |
| disjunction(CreateDisjunctionPurpose::ForNextAlternative); |
| |
| m_alternative->m_terms.append(PatternTerm(characterClass, invert, m_flags, parenthesisMatchDirection())); |
| } |
| |
| atomParenthesesEnd(); |
| break; |
| } |
| // Fall through for the case where the characterClass REALLY doesn't have strings. |
| } |
| |
| m_alternative->m_terms.append(PatternTerm(m_pattern.unicodeCharacterClassFor(classID), invert, m_flags, parenthesisMatchDirection())); |
| break; |
| } |
| } |
| } |
| |
| void atomCharacterClassBegin(bool invert = false) |
| { |
| m_invertCharacterClass = invert; |
| |
| // We may have modifiers, so set case sensitivity on the fly |
| m_currentCharacterClassConstructor->setIsCaseInsensitive(ignoreCase()); |
| } |
| |
| void atomCharacterClassAtom(char32_t ch) |
| { |
| m_currentCharacterClassConstructor->putChar(ch); |
| } |
| |
| void atomCharacterClassRange(char32_t begin, char32_t end) |
| { |
| m_currentCharacterClassConstructor->putRange(begin, end); |
| } |
| |
| void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert) |
| { |
| ASSERT(classID != BuiltInCharacterClassID::DotClassID); |
| |
| switch (classID) { |
| case BuiltInCharacterClassID::DigitClassID: |
| m_currentCharacterClassConstructor->append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass()); |
| break; |
| |
| case BuiltInCharacterClassID::SpaceClassID: |
| m_currentCharacterClassConstructor->append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass()); |
| break; |
| |
| case BuiltInCharacterClassID::WordClassID: |
| if (m_pattern.eitherUnicode() && ignoreCase()) |
| m_currentCharacterClassConstructor->append(invert ? m_pattern.nonwordUnicodeIgnoreCaseCharCharacterClass() : m_pattern.wordUnicodeIgnoreCaseCharCharacterClass()); |
| else |
| m_currentCharacterClassConstructor->append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass()); |
| break; |
| |
| default: |
| if (!invert) |
| m_currentCharacterClassConstructor->append(m_pattern.unicodeCharacterClassFor(classID)); |
| else |
| m_currentCharacterClassConstructor->appendInverted(m_pattern.unicodeCharacterClassFor(classID)); |
| } |
| } |
| |
| void atomClassStringDisjunction(Vector<Vector<char32_t>>& utf32Strings) |
| { |
| m_currentCharacterClassConstructor->atomClassStringDisjunction(utf32Strings); |
| } |
| |
| void atomCharacterClassSetOp(CharacterClassSetOp setOp) |
| { |
| m_currentCharacterClassConstructor->combiningSetOp(setOp); |
| } |
| |
| void atomCharacterClassPushNested(bool invert) |
| { |
| m_characterClassStack.append(CharacterClassConstructor(ignoreCase(), m_pattern.compileMode())); |
| m_currentCharacterClassConstructor = &m_characterClassStack.last(); |
| m_invertCharacterClass = invert; |
| } |
| |
| void atomCharacterClassPopNested(bool invert) |
| { |
| if (m_characterClassStack.isEmpty()) |
| return; |
| |
| if (m_invertCharacterClass) |
| m_currentCharacterClassConstructor->invertMatches(); |
| |
| CharacterClassConstructor* priorCharacterClassConstructor = m_characterClassStack.size() == 1 ? &m_baseCharacterClassConstructor : &m_characterClassStack[m_characterClassStack.size() - 2]; |
| priorCharacterClassConstructor->performSetOpWith(m_currentCharacterClassConstructor); |
| m_characterClassStack.removeLast(); |
| m_currentCharacterClassConstructor = priorCharacterClassConstructor; |
| m_invertCharacterClass = invert; |
| } |
| |
| void atomCharacterClassEnd() |
| { |
| if (m_currentCharacterClassConstructor->hasInvertedStrings()) { |
| m_error = ErrorCode::NegatedClassSetMayContainStrings; |
| return; |
| } |
| |
| auto newCharacterClass = m_currentCharacterClassConstructor->charClass(); |
| m_currentCharacterClassConstructor->reset(); |
| auto hasStrings = newCharacterClass->hasStrings(); |
| |
| auto addCharacterClassTerm = [&] () { |
| if (!m_invertCharacterClass && newCharacterClass.get()->m_anyCharacter) { |
| m_alternative->m_terms.append(PatternTerm(m_pattern.anyCharacterClass(), false, m_flags)); |
| return; |
| } |
| |
| m_alternative->m_terms.append(PatternTerm(newCharacterClass.get(), m_invertCharacterClass, m_flags)); |
| }; |
| |
| if (!hasStrings) |
| addCharacterClassTerm(); |
| else { |
| if (m_invertCharacterClass) { |
| m_error = ErrorCode::NegatedClassSetMayContainStrings; |
| return; |
| } |
| |
| atomParenthesesSubpatternBegin(false); |
| unsigned alternativeCount = 0; |
| for (unsigned i = 0; i < newCharacterClass->m_strings.size(); ++i) { |
| if (alternativeCount) |
| disjunction(CreateDisjunctionPurpose::ForNextAlternative); |
| |
| auto string = newCharacterClass->m_strings[i]; |
| |
| for (auto ch : string) |
| atomPatternCharacter(ch, /* hyphenIsRange */ false); |
| |
| ++alternativeCount; |
| } |
| |
| if (newCharacterClass->hasSingleCharacters()) { |
| if (alternativeCount) |
| disjunction(CreateDisjunctionPurpose::ForNextAlternative); |
| |
| addCharacterClassTerm(); |
| } |
| |
| atomParenthesesEnd(); |
| } |
| |
| m_pattern.m_userCharacterClasses.append(WTFMove(newCharacterClass)); |
| } |
| |
| void atomParenthesesSubpatternBegin(bool capture = true, std::optional<String> optGroupName = std::nullopt) |
| { |
| unsigned subpatternId = m_pattern.m_numSubpatterns + 1; |
| if (capture) { |
| m_pattern.m_numSubpatterns++; |
| if (optGroupName) { |
| addCaptureGroupForName(optGroupName.value(), subpatternId); |
| } |
| } else |
| ASSERT(!optGroupName); |
| |
| auto parenthesesDisjunction = makeUnique<PatternDisjunction>(m_alternative); |
| m_alternative->m_terms.append(PatternTerm(PatternTerm::Type::ParenthesesSubpattern, subpatternId, parenthesesDisjunction.get(), m_flags, capture, false, parenthesisMatchDirection())); |
| m_alternative = parenthesesDisjunction->addNewAlternative(m_pattern.m_numSubpatterns, parenthesisMatchDirection()); |
| pushParenthesisContext(); |
| m_pattern.m_disjunctions.append(WTFMove(parenthesesDisjunction)); |
| } |
| |
| void atomParentheticalAssertionBegin(bool invert, MatchDirection matchDirection) |
| { |
| auto parenthesesDisjunction = makeUnique<PatternDisjunction>(m_alternative); |
| m_alternative->m_terms.append(PatternTerm(PatternTerm::Type::ParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction.get(), m_flags, false, invert, matchDirection)); |
| m_alternative = parenthesesDisjunction->addNewAlternative(m_pattern.m_numSubpatterns, matchDirection); |
| pushParenthesisContext(); |
| setParenthesisInvert(invert); |
| setParenthesisMatchDirection(matchDirection); |
| if (matchDirection == Backward) |
| m_pattern.m_containsLookbehinds = true; |
| m_pattern.m_disjunctions.append(WTFMove(parenthesesDisjunction)); |
| } |
| |
| void atomParentheticalModifierBegin(OptionSet<Flags> set, OptionSet<Flags> unset) |
| { |
| auto parenthesesDisjunction = makeUnique<PatternDisjunction>(m_alternative); |
| m_alternative->m_terms.append(PatternTerm(PatternTerm::Type::ParenthesesSubpattern, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction.get(), m_flags, false, false, parenthesisMatchDirection())); |
| m_alternative = parenthesesDisjunction->addNewAlternative(m_pattern.m_numSubpatterns, parenthesisMatchDirection()); |
| pushParenthesisContext(); |
| m_pattern.m_disjunctions.append(WTFMove(parenthesesDisjunction)); |
| |
| // Mark this context as a modifier, so we restore the flags afterwards |
| m_parenthesisContext.setModifier(true); |
| // Keep the old flags here, so when we come back up we can get it |
| m_parenthesisContext.setFlags(m_flags); |
| m_flags.add(set); |
| m_flags.remove(unset); |
| m_pattern.m_containsModifiers = true; |
| } |
| |
| void atomParenthesesEnd() |
| { |
| ASSERT(m_alternative->m_parent); |
| ASSERT(m_alternative->m_parent->m_parent); |
| |
| PatternDisjunction* parenthesesDisjunction = m_alternative->m_parent; |
| m_alternative = m_alternative->m_parent->m_parent; |
| |
| PatternTerm& lastTerm = m_alternative->lastTerm(); |
| |
| unsigned numBOLAnchoredAlts = 0; |
| unsigned numParenAlternatives = parenthesesDisjunction->m_alternatives.size(); |
| ASSERT(numParenAlternatives); |
| |
| for (unsigned i = 0; i < numParenAlternatives; i++) { |
| // Bubble up BOL flags |
| if (parenthesesDisjunction->m_alternatives[i]->m_startsWithBOL) |
| numBOLAnchoredAlts++; |
| } |
| |
| parenthesesDisjunction->m_alternatives.last()->m_isLastAlternative = true; |
| |
| if (numBOLAnchoredAlts) { |
| m_alternative->m_containsBOL = true; |
| // If all the alternatives in parens start with BOL, then so does this one |
| if (numBOLAnchoredAlts == numParenAlternatives) |
| m_alternative->m_startsWithBOL = true; |
| } |
| |
| lastTerm.parentheses.lastSubpatternId = m_pattern.m_numSubpatterns; |
| |
| bool shouldTryConvertingForwardReferencesToBackreferences = |
| lastTerm.type == PatternTerm::Type::ParentheticalAssertion |
| && !m_forwardReferencesInLookbehind.isEmpty() |
| && parenthesisMatchDirection() == Backward; |
| |
| if (m_parenthesisContext.isModifier()) |
| m_flags = m_parenthesisContext.flags(); |
| |
| popParenthesisContext(); |
| |
| if (shouldTryConvertingForwardReferencesToBackreferences && parenthesisMatchDirection() == Forward) |
| tryConvertingForwardReferencesToBackreferences(); |
| } |
| |
| void atomBackReference(unsigned subpatternId) |
| { |
| ASSERT(subpatternId); |
| if (subpatternId > m_pattern.m_numSubpatterns) { |
| m_alternative->m_terms.append(PatternTerm::ForwardReference(m_flags)); |
| if (parenthesisMatchDirection() == Backward) { |
| // When matching backwards, this forward reference could actually be |
| // a backreference for a captured paren in the lookbehind yet to be parsed. |
| PatternTerm& term = m_alternative->lastTerm(); |
| term.backReferenceSubpatternId = subpatternId; |
| term.m_matchDirection = parenthesisMatchDirection(); |
| m_forwardReferencesInLookbehind.append(UnresolvedForwardReference(m_alternative, m_alternative->lastTermIndex())); |
| } |
| return; |
| } |
| |
| PatternAlternative* currentAlternative = m_alternative; |
| ASSERT(currentAlternative); |
| |
| // Note to self: if we waited until the AST was baked, we could also remove forwards refs |
| while ((currentAlternative = currentAlternative->m_parent->m_parent)) { |
| PatternTerm& term = currentAlternative->lastTerm(); |
| ASSERT((term.type == PatternTerm::Type::ParenthesesSubpattern) || (term.type == PatternTerm::Type::ParentheticalAssertion)); |
| |
| if ((term.type == PatternTerm::Type::ParenthesesSubpattern) && term.capture() && (subpatternId == term.parentheses.subpatternId)) { |
| m_alternative->m_terms.append(PatternTerm::ForwardReference(m_flags)); |
| return; |
| } |
| } |
| |
| m_alternative->m_terms.append(PatternTerm(subpatternId, m_flags)); |
| m_pattern.m_containsBackreferences = true; |
| } |
| |
| void atomNamedBackReference(const String& subpatternName) |
| { |
| ASSERT(m_pattern.m_namedGroupToParenIndices.find(subpatternName) != m_pattern.m_namedGroupToParenIndices.end()); |
| auto parenIndices = m_pattern.m_namedGroupToParenIndices.get(subpatternName); |
| |
| if (parenIndices.size() == 2) { |
| // If this isn't a duplicate group, we need to go through the same analysis as a non-named backreferece to determine if |
| // this backreference appears in the capture itself. A duplicate could be satisfied by a prior capture and therefore doesn't |
| // need this analysis. |
| unsigned subpatternId = parenIndices.last(); |
| |
| PatternAlternative* currentAlternative = m_alternative; |
| ASSERT(currentAlternative); |
| |
| while ((currentAlternative = currentAlternative->m_parent->m_parent)) { |
| PatternTerm& term = currentAlternative->lastTerm(); |
| ASSERT((term.type == PatternTerm::Type::ParenthesesSubpattern) || (term.type == PatternTerm::Type::ParentheticalAssertion)); |
| |
| if ((term.type == PatternTerm::Type::ParenthesesSubpattern) && term.capture() && (subpatternId == term.parentheses.subpatternId)) { |
| m_alternative->m_terms.append(PatternTerm::ForwardReference(m_flags)); |
| return; |
| } |
| } |
| } |
| |
| if (parenthesisMatchDirection() == Forward) { |
| m_alternative->m_terms.append(PatternTerm(parenIndices.last(), m_flags)); |
| PatternTerm& lastTerm = m_alternative->lastTerm(); |
| lastTerm.m_matchDirection = parenthesisMatchDirection(); |
| m_pattern.m_containsBackreferences = true; |
| return; |
| } |
| |
| // When part of a lookbehind, it could be the case that a prior alternative has a duplicate |
| // named capture. Therefore we create a ForwardReference that will be converted to a |
| // Backreference when the lookbehind or alternative is closed. |
| m_alternative->m_terms.append(PatternTerm::ForwardReference(m_flags)); |
| PatternTerm& term = m_alternative->lastTerm(); |
| term.m_matchDirection = parenthesisMatchDirection(); |
| // We record the current subpatternId, which we use when we try to convert to a back reference. |
| // To convert this forward reference to a back reference, the patternId for the named groups must be greater than the |
| // subpatternId we save here. We'll change it then. |
| term.backReferenceSubpatternId = m_pattern.m_numSubpatterns; |
| m_forwardReferencesInLookbehind.append(UnresolvedForwardReference(m_alternative, m_alternative->lastTermIndex(), subpatternName)); |
| } |
| |
| void atomNamedForwardReference(const String& subpatternName) |
| { |
| m_alternative->m_terms.append(PatternTerm::ForwardReference(m_flags)); |
| |
| if (parenthesisMatchDirection() == Backward) { |
| PatternTerm& term = m_alternative->lastTerm(); |
| term.m_matchDirection = parenthesisMatchDirection(); |
| m_forwardReferencesInLookbehind.append(UnresolvedForwardReference(m_alternative, m_alternative->lastTermIndex(), subpatternName)); |
| } |
| } |
| |
| // deep copy the argument disjunction. If filterStartsWithBOL is true, |
| // skip alternatives with m_startsWithBOL set true. |
| PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction, bool filterStartsWithBOL) |
| { |
| if (!isSafeToRecurse()) [[unlikely]] { |
| m_error = ErrorCode::PatternTooLarge; |
| return nullptr; |
| } |
| |
| std::unique_ptr<PatternDisjunction> newDisjunction; |
| for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { |
| PatternAlternative* alternative = disjunction->m_alternatives[alt].get(); |
| if (!filterStartsWithBOL || !alternative->m_startsWithBOL || alternative->m_direction == Backward) { |
| if (!newDisjunction) { |
| newDisjunction = makeUnique<PatternDisjunction>(); |
| newDisjunction->m_parent = disjunction->m_parent; |
| } |
| PatternAlternative* newAlternative = newDisjunction->addNewAlternative(alternative->m_firstSubpatternId, alternative->matchDirection()); |
| newAlternative->m_lastSubpatternId = alternative->m_lastSubpatternId; |
| newAlternative->m_terms.reserveCapacity(alternative->m_terms.size()); |
| for (auto& term : alternative->m_terms) { |
| if (auto copied = copyTerm(term, filterStartsWithBOL)) |
| newAlternative->m_terms.append(WTFMove(*copied)); |
| } |
| } |
| } |
| |
| if (hasError(error())) { |
| newDisjunction = nullptr; |
| return nullptr; |
| } |
| |
| if (!newDisjunction) |
| return nullptr; |
| |
| PatternDisjunction* copiedDisjunction = newDisjunction.get(); |
| m_pattern.m_disjunctions.append(WTFMove(newDisjunction)); |
| return copiedDisjunction; |
| } |
| |
| std::optional<PatternTerm> copyTerm(PatternTerm& term, bool filterStartsWithBOL) |
| { |
| if (!isSafeToRecurse()) [[unlikely]] { |
| m_error = ErrorCode::PatternTooLarge; |
| return PatternTerm(term); |
| } |
| |
| if ((term.type != PatternTerm::Type::ParenthesesSubpattern) && (term.type != PatternTerm::Type::ParentheticalAssertion)) |
| return PatternTerm(term); |
| |
| if (auto* newDisjunction = copyDisjunction(term.parentheses.disjunction, filterStartsWithBOL)) { |
| PatternTerm termCopy = term; |
| termCopy.parentheses.disjunction = newDisjunction; |
| m_pattern.m_hasCopiedParenSubexpressions = true; |
| return termCopy; |
| } |
| return std::nullopt; |
| } |
| |
| void quantifyAtom(unsigned min, unsigned max, bool greedy) |
| { |
| ASSERT(min <= max); |
| ASSERT(m_alternative->m_terms.size()); |
| |
| if (!max) { |
| // In a case of backwards parentheses matching, we may have a forward reference that has |
| // been quantified with {0}, meaning that we can elide it. We should check if we added an |
| // UnresolvedForwardReference object for this term, and if so, pop it. |
| if (parenthesisMatchDirection() == Backward && m_forwardReferencesInLookbehind.size()) { |
| UnresolvedForwardReference& mostRecentForwardReference = m_forwardReferencesInLookbehind.last(); |
| if (mostRecentForwardReference.term() == &m_alternative->lastTerm()) |
| m_forwardReferencesInLookbehind.removeLast(); |
| } |
| m_alternative->removeLastTerm(); |
| return; |
| } |
| |
| PatternTerm& term = m_alternative->lastTerm(); |
| ASSERT(term.type > PatternTerm::Type::AssertionWordBoundary); |
| ASSERT(term.quantityMinCount == 1 && term.quantityMaxCount == 1 && term.quantityType == QuantifierType::FixedCount); |
| |
| if (term.type == PatternTerm::Type::ParentheticalAssertion) { |
| // If an assertion is quantified with a minimum count of zero, it can simply be removed. |
| // This arises from the RepeatMatcher behaviour in the spec. Matching an assertion never |
| // results in any input being consumed, however the continuation passed to the assertion |
| // (called in steps, 8c and 9 of the RepeatMatcher definition, ES5.1 15.10.2.5) will |
| // reject all zero length matches (see step 2.1). A match from the continuation of the |
| // expression will still be accepted regardless (via steps 8a and 11) - the upshot of all |
| // this is that matches from the assertion are not required, and won't be accepted anyway, |
| // so no need to ever run it. |
| if (!min) |
| m_alternative->removeLastTerm(); |
| // We never need to run an assertion more than once. Subsequent interations will be run |
| // with the same start index (since assertions are non-capturing) and the same captures |
| // (per step 4 of RepeatMatcher in ES5.1 15.10.2.5), and as such will always produce the |
| // same result and captures. If the first match succeeds then the subsequent (min - 1) |
| // matches will too. Any additional optional matches will fail (on the same basis as the |
| // minimum zero quantified assertions, above), but this will still result in a match. |
| return; |
| } |
| |
| if (min == max) |
| term.quantify(min, max, QuantifierType::FixedCount); |
| else if (!min || (term.type == PatternTerm::Type::ParenthesesSubpattern && m_pattern.m_hasCopiedParenSubexpressions)) |
| term.quantify(min, max, greedy ? QuantifierType::Greedy : QuantifierType::NonGreedy); |
| else { |
| if (term.matchDirection() == Forward) { |
| term.quantify(min, min, QuantifierType::FixedCount); |
| m_alternative->m_terms.append(*copyTerm(term, /* filterStartsWithBOL */ false)); |
| // NOTE: this term is interesting from an analysis perspective, in that it can be ignored..... |
| m_alternative->lastTerm().quantify((max == quantifyInfinite) ? max : max - min, greedy ? QuantifierType::Greedy : QuantifierType::NonGreedy); |
| if (m_alternative->lastTerm().type == PatternTerm::Type::ParenthesesSubpattern) |
| m_alternative->lastTerm().parentheses.isCopy = true; |
| } else { |
| term.quantify((max == quantifyInfinite) ? max : max - min, greedy ? QuantifierType::Greedy : QuantifierType::NonGreedy); |
| if (term.type == PatternTerm::Type::ParenthesesSubpattern) |
| term.parentheses.isCopy = true; |
| m_alternative->m_terms.append(*copyTerm(term, /* filterStartsWithBOL */ false)); |
| m_alternative->lastTerm().quantify(min, min, QuantifierType::FixedCount); |
| if (m_alternative->lastTerm().type == PatternTerm::Type::ParenthesesSubpattern) |
| m_alternative->lastTerm().parentheses.isCopy = false; |
| } |
| } |
| } |
| |
| void disjunction(CreateDisjunctionPurpose purpose = CreateDisjunctionPurpose::NotForNextAlternative) |
| { |
| if (purpose == CreateDisjunctionPurpose::ForNextAlternative && !m_alternative->m_parent->m_parent) { |
| // Top level alternative, record captured ranges to clear out from prior alternatives. |
| m_alternative->m_lastSubpatternId = m_pattern.m_numSubpatterns; |
| } |
| |
| m_alternative = m_alternative->m_parent->addNewAlternative(m_pattern.m_numSubpatterns, parenthesisMatchDirection()); |
| } |
| |
| inline bool abortedDueToError() const |
| { |
| return hasError(m_error); |
| } |
| |
| inline ErrorCode abortErrorCode() const |
| { |
| return m_error; |
| } |
| |
| WARN_UNUSED_RETURN ErrorCode setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition, unsigned& newCallFrameSize) |
| { |
| if (!isSafeToRecurse()) [[unlikely]] |
| return ErrorCode::TooManyDisjunctions; |
| |
| ErrorCode error = ErrorCode::NoError; |
| alternative->m_hasFixedSize = true; |
| CheckedUint32 currentInputPosition = initialInputPosition; |
| |
| for (unsigned i = 0; i < alternative->m_terms.size(); ++i) { |
| PatternTerm& term = alternative->m_terms[i]; |
| |
| switch (term.type) { |
| case PatternTerm::Type::AssertionBOL: |
| case PatternTerm::Type::AssertionEOL: |
| case PatternTerm::Type::AssertionWordBoundary: |
| term.inputPosition = currentInputPosition; |
| break; |
| |
| case PatternTerm::Type::BackReference: |
| term.inputPosition = currentInputPosition; |
| term.frameLocation = currentCallFrameSize; |
| currentCallFrameSize += YarrStackSpaceForBackTrackInfoBackReference; |
| alternative->m_hasFixedSize = false; |
| break; |
| |
| case PatternTerm::Type::ForwardReference: |
| break; |
| |
| case PatternTerm::Type::PatternCharacter: |
| term.inputPosition = currentInputPosition; |
| if (term.quantityType != QuantifierType::FixedCount) { |
| term.frameLocation = currentCallFrameSize; |
| currentCallFrameSize += YarrStackSpaceForBackTrackInfoPatternCharacter; |
| alternative->m_hasFixedSize = false; |
| } else if (m_pattern.eitherUnicode()) { |
| CheckedUint32 tempCount = term.quantityMaxCount; |
| tempCount *= U16_LENGTH(term.patternCharacter); |
| if (tempCount.hasOverflowed()) |
| return ErrorCode::OffsetTooLarge; |
| currentInputPosition += tempCount; |
| } else |
| currentInputPosition += term.quantityMaxCount; |
| break; |
| |
| case PatternTerm::Type::CharacterClass: |
| term.inputPosition = currentInputPosition; |
| if (term.quantityType != QuantifierType::FixedCount) { |
| term.frameLocation = currentCallFrameSize; |
| currentCallFrameSize += YarrStackSpaceForBackTrackInfoCharacterClass; |
| alternative->m_hasFixedSize = false; |
| } else if (m_pattern.eitherUnicode()) { |
| term.frameLocation = currentCallFrameSize; |
| currentCallFrameSize += YarrStackSpaceForBackTrackInfoCharacterClass; |
| if (term.characterClass->hasOneCharacterSize() && !term.invert()) { |
| CheckedUint32 tempCount = term.quantityMaxCount; |
| tempCount *= term.characterClass->hasNonBMPCharacters() ? 2 : 1; |
| if (tempCount.hasOverflowed()) |
| return ErrorCode::OffsetTooLarge; |
| currentInputPosition += tempCount; |
| } else { |
| currentInputPosition += term.quantityMaxCount; |
| alternative->m_hasFixedSize = false; |
| } |
| } else |
| currentInputPosition += term.quantityMaxCount; |
| break; |
| |
| case PatternTerm::Type::ParenthesesSubpattern: |
| // Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own. |
| term.frameLocation = currentCallFrameSize; |
| if (term.quantityMaxCount == 1 && !term.parentheses.isCopy) { |
| currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesOnce; |
| error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition, currentCallFrameSize); |
| if (hasError(error)) |
| return error; |
| // If quantity is fixed, then pre-check its minimum size. |
| if (term.quantityType == QuantifierType::FixedCount) |
| currentInputPosition += term.parentheses.disjunction->m_minimumSize; |
| term.inputPosition = currentInputPosition; |
| } else if (term.parentheses.isTerminal) { |
| currentCallFrameSize += YarrStackSpaceForBackTrackInfoParenthesesTerminal; |
| error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition, currentCallFrameSize); |
| if (hasError(error)) |
| return error; |
| term.inputPosition = currentInputPosition; |
| } else { |
| term.inputPosition = currentInputPosition; |
| currentCallFrameSize += YarrStackSpaceForBackTrackInfoParentheses; |
| error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition, currentCallFrameSize); |
| if (hasError(error)) |
| return error; |
| } |
| // Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length. |
| alternative->m_hasFixedSize = false; |
| break; |
| |
| case PatternTerm::Type::ParentheticalAssertion: { |
| unsigned disjunctionInitialInputPosition = (term.matchDirection() == Forward) ? currentInputPosition.value() : 0; |
| term.inputPosition = currentInputPosition; |
| term.frameLocation = currentCallFrameSize; |
| error = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + YarrStackSpaceForBackTrackInfoParentheticalAssertion, disjunctionInitialInputPosition, currentCallFrameSize); |
| if (hasError(error)) |
| return error; |
| break; |
| } |
| |
| case PatternTerm::Type::DotStarEnclosure: |
| ASSERT(!m_pattern.m_saveInitialStartValue); |
| alternative->m_hasFixedSize = false; |
| term.inputPosition = initialInputPosition; |
| m_pattern.m_initialStartValueFrameLocation = currentCallFrameSize; |
| currentCallFrameSize += YarrStackSpaceForDotStarEnclosure; |
| m_pattern.m_saveInitialStartValue = true; |
| break; |
| } |
| if (currentInputPosition.hasOverflowed()) |
| return ErrorCode::OffsetTooLarge; |
| } |
| |
| alternative->m_minimumSize = currentInputPosition - initialInputPosition; |
| newCallFrameSize = currentCallFrameSize; |
| return error; |
| } |
| |
| ErrorCode setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition, unsigned& callFrameSize) |
| { |
| if (!isSafeToRecurse()) [[unlikely]] |
| return ErrorCode::TooManyDisjunctions; |
| |
| if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1)) |
| initialCallFrameSize += YarrStackSpaceForBackTrackInfoAlternative; |
| |
| unsigned minimumInputSize = UINT_MAX; |
| unsigned maximumCallFrameSize = 0; |
| bool hasFixedSize = true; |
| ErrorCode error = ErrorCode::NoError; |
| |
| for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) { |
| PatternAlternative* alternative = disjunction->m_alternatives[alt].get(); |
| unsigned currentAlternativeCallFrameSize; |
| error = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition, currentAlternativeCallFrameSize); |
| if (hasError(error)) |
| return error; |
| minimumInputSize = std::min(minimumInputSize, alternative->m_minimumSize); |
| maximumCallFrameSize = std::max(maximumCallFrameSize, currentAlternativeCallFrameSize); |
| hasFixedSize &= alternative->m_hasFixedSize; |
| if (alternative->m_minimumSize > INT_MAX) |
| m_pattern.m_containsUnsignedLengthPattern = true; |
| } |
| |
| ASSERT(maximumCallFrameSize >= initialCallFrameSize); |
| |
| disjunction->m_hasFixedSize = hasFixedSize; |
| disjunction->m_minimumSize = minimumInputSize; |
| disjunction->m_callFrameSize = maximumCallFrameSize; |
| callFrameSize = maximumCallFrameSize; |
| return error; |
| } |
| |
| ErrorCode setupOffsets() |
| { |
| // FIXME: Yarr should not use the stack to handle subpatterns (rdar://problem/26436314). |
| unsigned ignoredCallFrameSize; |
| return setupDisjunctionOffsets(m_pattern.m_body, 0, 0, ignoredCallFrameSize); |
| } |
| |
| // This optimization identifies sets of parentheses that we will never need to backtrack. |
| // In these cases we do not need to store state from prior iterations. |
| // We can presently avoid backtracking for: |
| // * where the parens are at the end of the regular expression (last term in any of the |
| // alternatives of the main body disjunction). |
| // * where the parens are non-capturing, and quantified unbounded greedy (*). |
| // * where the parens do not contain any capturing subpatterns. |
| // * Where the parens contains a BOL anchored non-captured subpattern with a single |
| // alternative of fixed strings, e.g. /^(?:foo|bar|baz). |
| // In such a case we can simplify matching a little more by stopping at the first |
| // matched string alternative, without jumping to backtracking doe to fixup offests. |
| // Instead we fixup the offsets, if needed, at the top of the next alternative's |
| // matching JIT code. |
| void checkForTerminalParentheses() |
| { |
| // This check is much too crude; should be just checking whether the candidate |
| // node contains nested capturing subpatterns, not the whole expression! |
| if (m_pattern.m_numSubpatterns) |
| return; |
| |
| Vector<std::unique_ptr<PatternAlternative>>& alternatives = m_pattern.m_body->m_alternatives; |
| alternatives.last()->m_isLastAlternative = true; |
| |
| if (alternatives.size() == 1 && alternatives[0]->m_startsWithBOL) { |
| Vector<PatternTerm>& terms = alternatives[0]->m_terms; |
| |
| bool isStringList = false; |
| |
| if (terms.size() >= 2 |
| && terms[0].type == PatternTerm::Type::AssertionBOL |
| && terms[1].type == PatternTerm::Type::ParenthesesSubpattern |
| && terms[1].quantityType == QuantifierType::FixedCount |
| && terms[1].quantityMaxCount == 1 |
| && (terms.size() == 2 |
| || (terms.size() == 3 && terms[2].type == PatternTerm::Type::AssertionEOL))) { |
| // We start assuming this is a string list and then prove the negative. |
| isStringList = true; |
| |
| PatternTerm& term = terms[1]; |
| |
| PatternDisjunction* nestedDisjunction = term.parentheses.disjunction; |
| for (unsigned alt = 0; isStringList && alt < nestedDisjunction->m_alternatives.size(); ++alt) { |
| Vector<PatternTerm>& innerTerms = nestedDisjunction->m_alternatives[alt]->m_terms; |
| |
| for (size_t termIndex = 0; termIndex < innerTerms.size(); ++termIndex) { |
| PatternTerm& innerTerm = innerTerms[termIndex]; |
| if (innerTerm.type != PatternTerm::Type::PatternCharacter |
| || innerTerm.quantityType != QuantifierType::FixedCount |
| || innerTerm.quantityMaxCount != 1) { |
| isStringList = false; |
| break; |
| } |
| } |
| } |
| |
| term.parentheses.isStringList = isStringList; |
| term.parentheses.isEOLStringList = (terms.size() == 3 && terms[2].type == PatternTerm::Type::AssertionEOL); |
| } |
| |
| if (isStringList) |
| return; |
| } |
| |
| for (auto& alternative : alternatives) { |
| auto& terms = alternative->m_terms; |
| if (terms.size()) { |
| PatternTerm& term = terms.last(); |
| if (term.type == PatternTerm::Type::ParenthesesSubpattern |
| && term.quantityType == QuantifierType::Greedy |
| && term.quantityMinCount == 0 |
| && term.quantityMaxCount == quantifyInfinite |
| && !term.capture()) |
| term.parentheses.isTerminal = true; |
| } |
| } |
| } |
| |
| void optimizeBOL() |
| { |
| // Look for expressions containing beginning of line (^) anchoring and unroll them. |
| // e.g. /^a|^b|c/ becomes /^a|^b|c/ which is executed once followed by /c/ which loops |
| // This code relies on the parsing code tagging alternatives with m_containsBOL and |
| // m_startsWithBOL and rolling those up to containing alternatives. |
| // At this point, this is only valid for non-multiline expressions. |
| PatternDisjunction* disjunction = m_pattern.m_body; |
| |
| // We'll start by being safe, since `m` mode could change with modifiers |
| if (m_pattern.m_containsModifiers || !m_pattern.m_containsBOL || m_pattern.multiline()) |
| return; |
| |
| PatternDisjunction* loopDisjunction = copyDisjunction(disjunction, /* filterStartsWithBOL */ true); |
| |
| // Set alternatives in disjunction to "onceThrough" |
| for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) |
| disjunction->m_alternatives[alt]->setOnceThrough(); |
| |
| if (loopDisjunction) { |
| // Move alternatives from loopDisjunction to disjunction |
| for (unsigned alt = 0; alt < loopDisjunction->m_alternatives.size(); ++alt) |
| disjunction->m_alternatives.append(loopDisjunction->m_alternatives[alt].release()); |
| |
| loopDisjunction->m_alternatives.clear(); |
| } |
| } |
| |
| bool containsCapturingTerms(PatternAlternative* alternative, size_t firstTermIndex, size_t endIndex) |
| { |
| Vector<PatternTerm>& terms = alternative->m_terms; |
| |
| ASSERT(endIndex <= terms.size()); |
| for (size_t termIndex = firstTermIndex; termIndex < endIndex; ++termIndex) { |
| PatternTerm& term = terms[termIndex]; |
| |
| if (term.m_capture) |
| return true; |
| |
| if (term.type == PatternTerm::Type::ParenthesesSubpattern) { |
| PatternDisjunction* nestedDisjunction = term.parentheses.disjunction; |
| for (unsigned alt = 0; alt < nestedDisjunction->m_alternatives.size(); ++alt) { |
| if (containsCapturingTerms(nestedDisjunction->m_alternatives[alt].get(), 0, nestedDisjunction->m_alternatives[alt]->m_terms.size())) |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| // This optimization identifies alternatives in the form of |
| // [^].*[?]<expression>.*[$] for expressions that don't have any |
| // capturing terms. The alternative is changed to <expression> |
| // followed by processing of the dot stars to find and adjust the |
| // beginning and the end of the match. |
| void optimizeDotStarWrappedExpressions() |
| { |
| Vector<std::unique_ptr<PatternAlternative>>& alternatives = m_pattern.m_body->m_alternatives; |
| if (alternatives.size() != 1) |
| return; |
| |
| CharacterClass* dotCharacterClass = dotAll() ? m_pattern.anyCharacterClass() : m_pattern.newlineCharacterClass(); |
| PatternAlternative* alternative = alternatives[0].get(); |
| Vector<PatternTerm>& terms = alternative->m_terms; |
| if (terms.size() >= 3) { |
| bool startsWithBOL = false; |
| bool endsWithEOL = false; |
| size_t termIndex, firstExpressionTerm; |
| |
| termIndex = 0; |
| if (terms[termIndex].type == PatternTerm::Type::AssertionBOL) { |
| startsWithBOL = true; |
| ++termIndex; |
| } |
| |
| PatternTerm& firstNonAnchorTerm = terms[termIndex]; |
| if (firstNonAnchorTerm.type != PatternTerm::Type::CharacterClass |
| || firstNonAnchorTerm.characterClass != dotCharacterClass |
| || firstNonAnchorTerm.quantityMinCount |
| || firstNonAnchorTerm.quantityMaxCount != quantifyInfinite) |
| return; |
| |
| firstExpressionTerm = termIndex + 1; |
| |
| termIndex = terms.size() - 1; |
| if (terms[termIndex].type == PatternTerm::Type::AssertionEOL) { |
| endsWithEOL = true; |
| --termIndex; |
| } |
| |
| PatternTerm& lastNonAnchorTerm = terms[termIndex]; |
| if (lastNonAnchorTerm.type != PatternTerm::Type::CharacterClass |
| || lastNonAnchorTerm.characterClass != dotCharacterClass |
| || lastNonAnchorTerm.quantityType != QuantifierType::Greedy |
| || lastNonAnchorTerm.quantityMinCount |
| || lastNonAnchorTerm.quantityMaxCount != quantifyInfinite) |
| return; |
| |
| size_t endIndex = termIndex; |
| if (firstExpressionTerm >= endIndex) |
| return; |
| |
| if (!containsCapturingTerms(alternative, firstExpressionTerm, endIndex)) { |
| for (termIndex = terms.size() - 1; termIndex >= endIndex; --termIndex) |
| terms.removeAt(termIndex); |
| |
| for (termIndex = firstExpressionTerm; termIndex > 0; --termIndex) |
| terms.removeAt(termIndex - 1); |
| |
| terms.append(PatternTerm(startsWithBOL, endsWithEOL, m_flags)); |
| |
| m_pattern.m_containsBOL = false; |
| } |
| } |
| } |
| |
| void setupNamedCaptures() |
| { |
| if (!m_pattern.m_hasNamedCaptureGroups) |
| return; |
| |
| // Finish padding out m_captureGroupNames vector. |
| while (m_pattern.m_captureGroupNames.size() <= m_pattern.m_numSubpatterns) |
| m_pattern.m_captureGroupNames.append(String()); |
| |
| for (auto& namedGroupIndicies : m_pattern.m_namedGroupToParenIndices.values()) { |
| if (namedGroupIndicies.size() == 2) { |
| // Since this named group is only used in one place, i.e. not a duplicate name, |
| // make that subpatternId as the only value in the vector. |
| ASSERT(namedGroupIndicies[0] == namedGroupIndicies[1]); |
| namedGroupIndicies.takeLast(); |
| } |
| } |
| |
| if (m_pattern.m_numDuplicateNamedCaptureGroups) { |
| m_pattern.m_duplicateNamedGroupForSubpatternId.fill(0, m_pattern.m_numSubpatterns + 1); |
| for (auto& namedGroupIndicies : m_pattern.m_namedGroupToParenIndices.values()) { |
| if (namedGroupIndicies.size() > 2) { |
| auto duplicateNamedGroupId = namedGroupIndicies[0]; |
| for (unsigned i = 1; i < namedGroupIndicies.size(); ++i) { |
| auto subpatternId = namedGroupIndicies[i]; |
| ASSERT(!m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId]); |
| m_pattern.m_duplicateNamedGroupForSubpatternId[subpatternId] = duplicateNamedGroupId; |
| } |
| } |
| } |
| } |
| } |
| |
| void extractSpecificPattern() |
| { |
| if (m_pattern.m_containsBackreferences) |
| return; |
| if (m_pattern.m_containsLookbehinds) |
| return; |
| if (m_pattern.m_containsUnsignedLengthPattern) |
| return; |
| if (m_pattern.m_containsModifiers) |
| return; |
| if (m_pattern.m_hasCopiedParenSubexpressions) |
| return; |
| if (m_pattern.m_hasNamedCaptureGroups) |
| return; |
| if (m_pattern.m_saveInitialStartValue) |
| return; |
| if (m_pattern.m_numSubpatterns) |
| return; |
| if (m_pattern.multiline()) |
| return; |
| if (m_pattern.sticky()) |
| return; |
| if (m_pattern.eitherUnicode()) |
| return; |
| if (m_pattern.ignoreCase()) |
| return; |
| |
| auto tryExtractAtom = [&]() -> bool { |
| if (m_pattern.m_containsBOL) |
| return false; |
| PatternDisjunction* disjunction = m_pattern.m_body; |
| if (!disjunction->m_minimumSize) |
| return false; |
| auto& alternatives = disjunction->m_alternatives; |
| if (alternatives.size() != 1) |
| return false; |
| StringBuilder builder; |
| auto* alternative = alternatives[0].get(); |
| for (unsigned index = 0; index < alternative->m_terms.size(); ++index) { |
| auto& term = alternative->m_terms[index]; |
| if (term.type != PatternTerm::Type::PatternCharacter) |
| return false; |
| if (term.quantityType != QuantifierType::FixedCount) |
| return false; |
| if (term.quantityMaxCount != 1) |
| return false; |
| if (term.inputPosition != index) |
| return false; |
| if (U16_LENGTH(term.patternCharacter) != 1) |
| return false; |
| if (term.m_matchDirection != MatchDirection::Forward) |
| return false; |
| builder.append(static_cast<char16_t>(term.patternCharacter)); |
| } |
| String atom = builder.toString(); |
| if (atom.length() > 0) { |
| m_pattern.m_atom = WTFMove(atom); |
| m_pattern.m_specificPattern = SpecificPattern::Atom; |
| return true; |
| } |
| return false; |
| }; |
| |
| auto tryExtractSpaces = [&]() -> bool { |
| PatternDisjunction* disjunction = m_pattern.m_body; |
| auto& alternatives = disjunction->m_alternatives; |
| if (alternatives.size() != 1) |
| return false; |
| |
| auto* alternative = alternatives[0].get(); |
| if (alternative->m_terms.isEmpty()) |
| return false; |
| |
| if (m_pattern.m_containsBOL) { |
| auto& termFirst = alternative->m_terms.first(); |
| if (termFirst.invert() || termFirst.type != PatternTerm::Type::AssertionBOL) |
| return false; |
| |
| if (alternative->m_terms.size() == 2) { |
| // ^\s* |
| auto& term1 = alternative->m_terms[1]; |
| if (term1.invert() || term1.type != PatternTerm::Type::CharacterClass || term1.characterClass != m_pattern.spacesCharacterClass()) |
| return false; |
| if (term1.inputPosition) |
| return false; |
| if (term1.quantityType != QuantifierType::Greedy) |
| return false; |
| if (term1.quantityMinCount) |
| return false; |
| if (term1.quantityMaxCount != quantifyInfinite) |
| return false; |
| |
| m_pattern.m_specificPattern = SpecificPattern::LeadingSpacesStar; |
| return true; |
| } |
| |
| if (alternative->m_terms.size() == 3) { |
| // ^\s+ |
| auto& term1 = alternative->m_terms[1]; |
| if (term1.invert() || term1.type != PatternTerm::Type::CharacterClass || term1.characterClass != m_pattern.spacesCharacterClass()) |
| return false; |
| if (term1.inputPosition) |
| return false; |
| if (term1.quantityType != QuantifierType::FixedCount) |
| return false; |
| if (term1.quantityMinCount != 1) |
| return false; |
| if (term1.quantityMaxCount != 1) |
| return false; |
| |
| auto& term2 = alternative->m_terms[2]; |
| if (term2.invert() || term2.type != PatternTerm::Type::CharacterClass || term2.characterClass != m_pattern.spacesCharacterClass()) |
| return false; |
| if (term2.inputPosition != 1) |
| return false; |
| if (term2.quantityType != QuantifierType::Greedy) |
| return false; |
| if (term2.quantityMinCount) |
| return false; |
| if (term2.quantityMaxCount != quantifyInfinite) |
| return false; |
| |
| m_pattern.m_specificPattern = SpecificPattern::LeadingSpacesPlus; |
| return true; |
| } |
| return false; |
| } |
| |
| auto& termLast = alternative->m_terms.last(); |
| if (termLast.invert() || termLast.type != PatternTerm::Type::AssertionEOL) |
| return false; |
| |
| if (alternative->m_terms.size() == 2) { |
| // \s*$ |
| auto& term0 = alternative->m_terms[0]; |
| if (term0.invert() || term0.type != PatternTerm::Type::CharacterClass || term0.characterClass != m_pattern.spacesCharacterClass()) |
| return false; |
| if (term0.inputPosition) |
| return false; |
| if (term0.quantityType != QuantifierType::Greedy) |
| return false; |
| if (term0.quantityMinCount) |
| return false; |
| if (term0.quantityMaxCount != quantifyInfinite) |
| return false; |
| |
| m_pattern.m_specificPattern = SpecificPattern::TrailingSpacesStar; |
| return true; |
| } |
| |
| if (alternative->m_terms.size() == 3) { |
| // \s+$ |
| auto& term0 = alternative->m_terms[0]; |
| if (term0.invert() || term0.type != PatternTerm::Type::CharacterClass || term0.characterClass != m_pattern.spacesCharacterClass()) |
| return false; |
| if (term0.inputPosition) |
| return false; |
| if (term0.quantityType != QuantifierType::FixedCount) |
| return false; |
| if (term0.quantityMinCount != 1) |
| return false; |
| if (term0.quantityMaxCount != 1) |
| return false; |
| |
| auto& term1 = alternative->m_terms[1]; |
| if (term1.invert() || term1.type != PatternTerm::Type::CharacterClass || term1.characterClass != m_pattern.spacesCharacterClass()) |
| return false; |
| if (term1.inputPosition != 1) |
| return false; |
| if (term1.quantityType != QuantifierType::Greedy) |
| return false; |
| if (term1.quantityMinCount) |
| return false; |
| if (term1.quantityMaxCount != quantifyInfinite) |
| return false; |
| |
| m_pattern.m_specificPattern = SpecificPattern::TrailingSpacesPlus; |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| auto tryExtractNewlines = [&]() -> bool { |
| // Detect patterns: \r\n?|\n or \n|\r\n? |
| // These patterns match LF (\n), CR (\r), and CRLF (\r\n) |
| |
| PatternDisjunction* disjunction = m_pattern.m_body; |
| auto& alternatives = disjunction->m_alternatives; |
| |
| if (alternatives.size() != 2) |
| return false; |
| |
| auto isCROptionalLF = [](PatternAlternative* alternative) -> bool { |
| if (alternative->m_terms.size() != 2) |
| return false; |
| |
| auto& term0 = alternative->m_terms[0]; |
| if (term0.type != PatternTerm::Type::PatternCharacter) |
| return false; |
| if (term0.patternCharacter != '\r') |
| return false; |
| if (term0.quantityType != QuantifierType::FixedCount) |
| return false; |
| if (term0.quantityMinCount != 1 || term0.quantityMaxCount != 1) |
| return false; |
| |
| auto& term1 = alternative->m_terms[1]; |
| if (term1.type != PatternTerm::Type::PatternCharacter) |
| return false; |
| if (term1.patternCharacter != '\n') |
| return false; |
| if (term1.quantityType != QuantifierType::Greedy) |
| return false; |
| if (term1.quantityMinCount || term1.quantityMaxCount != 1) |
| return false; |
| |
| return true; |
| }; |
| |
| auto isLF = [](PatternAlternative* alternative) -> bool { |
| if (alternative->m_terms.size() != 1) |
| return false; |
| |
| auto& term = alternative->m_terms[0]; |
| if (term.type != PatternTerm::Type::PatternCharacter) |
| return false; |
| if (term.patternCharacter != '\n') |
| return false; |
| if (term.quantityType != QuantifierType::FixedCount) |
| return false; |
| if (term.quantityMinCount != 1 || term.quantityMaxCount != 1) |
| return false; |
| |
| return true; |
| }; |
| |
| auto* alternative1 = alternatives[0].get(); |
| auto* alternative2 = alternatives[1].get(); |
| |
| bool matches = (isCROptionalLF(alternative1) && isLF(alternative2)) |
| || (isLF(alternative1) && isCROptionalLF(alternative2)); |
| |
| if (matches) { |
| m_pattern.m_specificPattern = SpecificPattern::Newlines; |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| if (tryExtractAtom()) |
| return; |
| |
| if (tryExtractSpaces()) |
| return; |
| |
| if (tryExtractNewlines()) |
| return; |
| } |
| |
| ErrorCode error() { return m_error; } |
| |
| private: |
| class ParenthesisContext { |
| private: |
| class SavedContext { |
| public: |
| SavedContext(bool isModifier, bool invert, MatchDirection matchDirection, OptionSet<Flags> flags) |
| : m_isModifier(isModifier) |
| , m_invert(invert) |
| , m_matchDirection(matchDirection) |
| , m_flags(flags) |
| { |
| } |
| |
| void restore(bool& isModifier, bool& invert, MatchDirection& matchDirection, OptionSet<Flags>& flags) |
| { |
| isModifier = m_isModifier; |
| invert = m_invert; |
| matchDirection = m_matchDirection; |
| flags = m_flags; |
| } |
| |
| private: |
| bool m_isModifier { false }; |
| bool m_invert { false }; |
| MatchDirection m_matchDirection { Forward }; |
| OptionSet<Flags> m_flags; |
| }; |
| |
| public: |
| ParenthesisContext() |
| { |
| } |
| |
| void push() |
| { |
| ASSERT(m_stackDepth < std::numeric_limits<unsigned>::max()); |
| |
| if (m_stackDepth++ > 0) |
| m_backingStack.append(SavedContext(m_isModifier, m_invert, m_matchDirection, m_flags)); |
| |
| // isModifier should only apply to one frame at a time |
| m_isModifier = false; |
| } |
| |
| void pop() |
| { |
| ASSERT(m_stackDepth > 0); |
| |
| if (--m_stackDepth > 0) { |
| SavedContext context = m_backingStack.takeLast(); |
| context.restore(m_isModifier, m_invert, m_matchDirection, m_flags); |
| } else { |
| m_isModifier = false; |
| m_invert = false; |
| m_matchDirection = Forward; |
| m_flags = { }; |
| } |
| } |
| |
| void setModifier(bool isMod) |
| { |
| m_isModifier = isMod; |
| } |
| |
| bool isModifier() const |
| { |
| return m_isModifier; |
| } |
| |
| void setInvert(bool invert) |
| { |
| m_invert = invert; |
| } |
| |
| bool invert() const |
| { |
| return m_invert; |
| } |
| |
| void setMatchDirection(MatchDirection matchDirection) |
| { |
| m_matchDirection = matchDirection; |
| } |
| |
| MatchDirection matchDirection() const |
| { |
| return m_matchDirection; |
| } |
| |
| void setFlags(OptionSet<Flags> flags) |
| { |
| m_flags = flags; |
| } |
| |
| OptionSet<Flags> flags() const |
| { |
| return m_flags; |
| } |
| |
| void reset() |
| { |
| m_backingStack.clear(); |
| m_stackDepth = 0; |
| |
| m_isModifier = false; |
| m_invert = false; |
| m_matchDirection = Forward; |
| m_flags = { }; |
| } |
| |
| private: |
| Vector<SavedContext, 0> m_backingStack; |
| unsigned m_stackDepth { 0 }; |
| bool m_isModifier { false }; |
| bool m_invert { false }; |
| MatchDirection m_matchDirection { Forward }; |
| OptionSet<Flags> m_flags; |
| }; |
| |
| void pushParenthesisContext() |
| { |
| m_parenthesisContext.push(); |
| } |
| |
| void popParenthesisContext() |
| { |
| m_parenthesisContext.pop(); |
| } |
| |
| void setParenthesisInvert(bool invert) |
| { |
| m_parenthesisContext.setInvert(invert); |
| } |
| |
| bool parenthesisInvert() const |
| { |
| return m_parenthesisContext.invert(); |
| } |
| |
| void setParenthesisMatchDirection(MatchDirection matchDirection) |
| { |
| m_parenthesisContext.setMatchDirection(matchDirection); |
| } |
| |
| MatchDirection parenthesisMatchDirection() const |
| { |
| return m_parenthesisContext.matchDirection(); |
| } |
| |
| bool ignoreCase() const |
| { |
| return m_flags.contains(Flags::IgnoreCase); |
| } |
| |
| bool multiline() const |
| { |
| return m_flags.contains(Flags::Multiline); |
| } |
| |
| bool dotAll() const |
| { |
| return m_flags.contains(Flags::DotAll); |
| } |
| |
| inline bool isSafeToRecurse() { return m_stackCheck.isSafeToRecurse(); } |
| |
| YarrPattern& m_pattern; |
| PatternAlternative* m_alternative; |
| CharacterClassConstructor m_baseCharacterClassConstructor; |
| CharacterClassConstructor* m_currentCharacterClassConstructor; |
| Vector<CharacterClassConstructor> m_characterClassStack; |
| Vector<UnresolvedForwardReference> m_forwardReferencesInLookbehind; |
| StackCheck m_stackCheck; |
| ErrorCode m_error { ErrorCode::NoError }; |
| bool m_invertCharacterClass; |
| ParenthesisContext m_parenthesisContext; |
| |
| OptionSet<Flags> m_initialFlags; |
| OptionSet<Flags> m_flags; |
| }; |
| static_assert(YarrSyntaxCheckable<YarrPatternConstructor>); |
| |
| ErrorCode YarrPattern::compile(StringView patternString) |
| { |
| YarrPatternConstructor constructor(*this, m_flags); |
| |
| { |
| ErrorCode error = parse(constructor, patternString, compileMode()); |
| if (hasError(constructor.error())) |
| return constructor.error(); |
| |
| if (hasError(error)) |
| return error; |
| } |
| |
| constructor.checkForTerminalParentheses(); |
| constructor.optimizeDotStarWrappedExpressions(); |
| constructor.optimizeBOL(); |
| |
| if (hasError(constructor.error())) |
| return constructor.error(); |
| |
| { |
| ErrorCode error = constructor.setupOffsets(); |
| if (hasError(error)) |
| return error; |
| } |
| |
| constructor.setupNamedCaptures(); |
| |
| constructor.extractSpecificPattern(); |
| |
| if (Options::dumpCompiledRegExpPatterns()) [[unlikely]] |
| dumpPattern(patternString); |
| |
| return ErrorCode::NoError; |
| } |
| |
| YarrPattern::YarrPattern(StringView pattern, OptionSet<Flags> flags, ErrorCode& error) |
| : m_containsBackreferences(false) |
| , m_containsBOL(false) |
| , m_containsLookbehinds(false) |
| , m_containsUnsignedLengthPattern(false) |
| , m_containsModifiers(false) |
| , m_hasCopiedParenSubexpressions(false) |
| , m_hasNamedCaptureGroups(false) |
| , m_saveInitialStartValue(false) |
| , m_flags(flags) |
| { |
| ASSERT(m_flags != Flags::DeletedValue); |
| error = compile(pattern); |
| } |
| |
| void indentForNestingLevel(PrintStream& out, unsigned nestingDepth) |
| { |
| out.print(" "); |
| for (; nestingDepth; --nestingDepth) |
| out.print(" "); |
| } |
| |
| void dumpChar32(PrintStream& out, char32_t c) |
| { |
| if (c >= ' ' && c <= 0xff) |
| out.printf("'%c'", static_cast<char>(c)); |
| else |
| out.printf("0x%04x", c); |
| } |
| |
| void dumpCharacterClass(PrintStream& out, YarrPattern* pattern, CharacterClass* characterClass) |
| { |
| if (pattern) { |
| if (characterClass == pattern->anyCharacterClass()) { |
| out.print("<any character>"); |
| return; |
| } |
| if (characterClass == pattern->newlineCharacterClass()) { |
| out.print("<newline>"); |
| return; |
| } |
| if (characterClass == pattern->digitsCharacterClass()) { |
| out.print("<digits>"); |
| return; |
| } |
| if (characterClass == pattern->spacesCharacterClass()) { |
| out.print("<whitespace>"); |
| return; |
| } |
| if (characterClass == pattern->wordcharCharacterClass()) { |
| out.print("<word>"); |
| return; |
| } |
| if (characterClass == pattern->wordUnicodeIgnoreCaseCharCharacterClass()) { |
| out.print("<unicode word ignore case>"); |
| return; |
| } |
| if (characterClass == pattern->nondigitsCharacterClass()) { |
| out.print("<non-digits>"); |
| return; |
| } |
| if (characterClass == pattern->nonspacesCharacterClass()) { |
| out.print("<non-whitespace>"); |
| return; |
| } |
| if (characterClass == pattern->nonwordcharCharacterClass()) { |
| out.print("<non-word>"); |
| return; |
| } |
| if (characterClass == pattern->nonwordUnicodeIgnoreCaseCharCharacterClass()) { |
| out.print("<unicode non-word ignore case>"); |
| return; |
| } |
| } |
| |
| bool needMatchesRangesSeparator = false; |
| |
| auto dumpMatches = [&] (const char* prefix, Vector<char32_t> matches) { |
| size_t matchesSize = matches.size(); |
| if (matchesSize) { |
| if (needMatchesRangesSeparator) |
| out.print(","); |
| needMatchesRangesSeparator = true; |
| |
| out.print(prefix, ":("); |
| for (size_t i = 0; i < matchesSize; ++i) { |
| if (i) |
| out.print(","); |
| dumpChar32(out, matches[i]); |
| } |
| out.print(")"); |
| } |
| }; |
| |
| auto dumpRanges = [&] (const char* prefix, Vector<CharacterRange> ranges) { |
| size_t rangeSize = ranges.size(); |
| if (rangeSize) { |
| if (needMatchesRangesSeparator) |
| out.print(","); |
| needMatchesRangesSeparator = true; |
| |
| out.print(prefix, " ranges:("); |
| for (size_t i = 0; i < rangeSize; ++i) { |
| if (i) |
| out.print(","); |
| CharacterRange range = ranges[i]; |
| out.print("("); |
| dumpChar32(out, range.begin); |
| out.print(".."); |
| dumpChar32(out, range.end); |
| out.print(")"); |
| } |
| out.print(")"); |
| } |
| }; |
| |
| out.print("["); |
| dumpMatches("ASCII", characterClass->m_matches); |
| dumpRanges("ASCII", characterClass->m_ranges); |
| dumpMatches("Unicode", characterClass->m_matchesUnicode); |
| dumpRanges("Unicode", characterClass->m_rangesUnicode); |
| out.print("]"); |
| } |
| |
| void PatternAlternative::dump(PrintStream& out, YarrPattern* thisPattern, unsigned nestingDepth) |
| { |
| out.print("minimum size: ", m_minimumSize); |
| if (m_hasFixedSize) |
| out.print(",fixed size"); |
| if (m_onceThrough) |
| out.print(",once through"); |
| if (m_startsWithBOL) |
| out.print(",starts with ^"); |
| if (m_containsBOL) |
| out.print(",contains ^"); |
| if (m_isLastAlternative) |
| out.print(", last alternative"); |
| out.print("\n"); |
| |
| for (size_t i = 0; i < m_terms.size(); ++i) |
| m_terms[i].dump(out, thisPattern, nestingDepth); |
| } |
| |
| void PatternTerm::dumpQuantifier(PrintStream& out) |
| { |
| if (quantityType == QuantifierType::FixedCount && quantityMinCount == 1 && quantityMaxCount == 1) |
| return; |
| out.print(" {", quantityMinCount.value()); |
| if (quantityMinCount != quantityMaxCount) { |
| if (quantityMaxCount == UINT_MAX) |
| out.print(",..."); |
| else |
| out.print(",", quantityMaxCount.value()); |
| } |
| out.print("}"); |
| if (quantityType == QuantifierType::Greedy) |
| out.print(" greedy"); |
| else if (quantityType == QuantifierType::NonGreedy) |
| out.print(" non-greedy"); |
| } |
| |
| void PatternTerm::dump(PrintStream& out, YarrPattern* thisPattern, unsigned nestingDepth) |
| { |
| indentForNestingLevel(out, nestingDepth); |
| |
| out.print("<"); |
| if (m_currentFlags.contains(Flags::IgnoreCase)) |
| out.print("i"); |
| else |
| out.print(" "); |
| if (m_currentFlags.contains(Flags::Multiline)) |
| out.print("m"); |
| else |
| out.print(" "); |
| if (m_currentFlags.contains(Flags::DotAll)) |
| out.print("s"); |
| else |
| out.print(" "); |
| out.print("> "); |
| |
| if (type != Type::ParenthesesSubpattern && type != Type::ParentheticalAssertion) { |
| if (invert()) |
| out.print("not "); |
| } |
| |
| switch (type) { |
| case Type::AssertionBOL: |
| out.println("BOL"); |
| break; |
| case Type::AssertionEOL: |
| out.println("EOL"); |
| break; |
| case Type::AssertionWordBoundary: |
| out.println("word boundary"); |
| break; |
| case Type::PatternCharacter: |
| out.printf("character "); |
| out.printf("inputPosition %u ", inputPosition); |
| if (thisPattern->ignoreCase() && isASCIIAlpha(patternCharacter)) { |
| dumpChar32(out, toASCIIUpper(patternCharacter)); |
| out.print("/"); |
| dumpChar32(out, toASCIILower(patternCharacter)); |
| } else |
| dumpChar32(out, patternCharacter); |
| dumpQuantifier(out); |
| if (quantityType != QuantifierType::FixedCount) |
| out.print(",frame location ", frameLocation); |
| out.println(); |
| break; |
| case Type::CharacterClass: |
| out.print("character class "); |
| out.printf("inputPosition %u ", inputPosition); |
| dumpCharacterClass(out, thisPattern, characterClass); |
| dumpQuantifier(out); |
| if (quantityType != QuantifierType::FixedCount || thisPattern->eitherUnicode()) |
| out.print(",frame location ", frameLocation); |
| out.println(); |
| break; |
| case Type::BackReference: |
| out.print("back reference of subpattern #", backReferenceSubpatternId); |
| out.printf(" inputPosition %u", inputPosition); |
| out.println(); |
| break; |
| case Type::ForwardReference: |
| out.println("forward reference"); |
| break; |
| case Type::ParenthesesSubpattern: |
| if (m_capture) |
| out.print("captured "); |
| else |
| out.print("non-captured "); |
| |
| [[fallthrough]]; |
| case Type::ParentheticalAssertion: |
| if (m_matchDirection) { |
| if (type == Type::ParenthesesSubpattern) |
| out.print("backwards "); |
| else |
| out.print("lookbehind "); |
| } |
| out.printf("inputPosition %u ", inputPosition); |
| if (m_invert) |
| out.print("inverted "); |
| |
| if (type == Type::ParenthesesSubpattern) |
| out.print("subpattern"); |
| else if (type == Type::ParentheticalAssertion) |
| out.print("assertion"); |
| |
| if (m_capture) |
| out.print(" #", parentheses.subpatternId); |
| |
| dumpQuantifier(out); |
| |
| if (parentheses.isCopy) |
| out.print(",copy"); |
| |
| if (parentheses.isTerminal) |
| out.print(",terminal"); |
| |
| if (parentheses.isStringList) |
| out.print(",string-list"); |
| |
| out.println(",frame location ", frameLocation); |
| |
| if (parentheses.disjunction->m_alternatives.size() > 1) { |
| indentForNestingLevel(out, nestingDepth + 1); |
| unsigned alternativeFrameLocation = frameLocation; |
| if (quantityMaxCount == 1 && !parentheses.isCopy) |
| alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesOnce; |
| else if (parentheses.isTerminal) |
| alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParenthesesTerminal; |
| else |
| alternativeFrameLocation += YarrStackSpaceForBackTrackInfoParentheses; |
| out.println("alternative list,frame location ", alternativeFrameLocation); |
| } |
| |
| parentheses.disjunction->dump(out, thisPattern, nestingDepth + 1); |
| break; |
| case Type::DotStarEnclosure: |
| out.println(".* enclosure,frame location ", thisPattern->m_initialStartValueFrameLocation); |
| break; |
| } |
| } |
| |
| void PatternDisjunction::dump(PrintStream& out, YarrPattern* thisPattern, unsigned nestingDepth = 0) |
| { |
| unsigned alternativeCount = m_alternatives.size(); |
| for (unsigned i = 0; i < alternativeCount; ++i) { |
| indentForNestingLevel(out, nestingDepth); |
| if (alternativeCount > 1) |
| out.print("alternative #", i, ": "); |
| m_alternatives[i].get()->dump(out, thisPattern, nestingDepth + (alternativeCount > 1)); |
| } |
| } |
| |
| void YarrPattern::dumpPatternString(PrintStream& out, StringView patternString) |
| { |
| out.print("/", patternString, "/"); |
| |
| if (global()) |
| out.print("g"); |
| if (ignoreCase()) |
| out.print("i"); |
| if (multiline()) |
| out.print("m"); |
| if (unicode()) |
| out.print("u"); |
| if (unicodeSets()) |
| out.print("v"); |
| if (sticky()) |
| out.print("y"); |
| } |
| |
| void YarrPattern::dumpPattern(StringView patternString) |
| { |
| dumpPattern(WTF::dataFile(), patternString); |
| } |
| |
| void YarrPattern::dumpPattern(PrintStream& out, StringView patternString) |
| { |
| out.print("RegExp pattern for "); |
| dumpPatternString(out, patternString); |
| |
| if (m_flags) { |
| bool printSeparator = false; |
| out.print(" ("); |
| if (global()) { |
| out.print("global"); |
| printSeparator = true; |
| } |
| if (ignoreCase()) { |
| if (printSeparator) |
| out.print("|"); |
| out.print("ignore case"); |
| printSeparator = true; |
| } |
| if (multiline()) { |
| if (printSeparator) |
| out.print("|"); |
| out.print("multiline"); |
| printSeparator = true; |
| } |
| if (unicode()) { |
| if (printSeparator) |
| out.print("|"); |
| out.print("unicode"); |
| printSeparator = true; |
| } |
| if (unicodeSets()) { |
| if (printSeparator) |
| out.print("|"); |
| out.print("unicodeSets"); |
| printSeparator = true; |
| } |
| if (sticky()) { |
| if (printSeparator) |
| out.print("|"); |
| out.print("sticky"); |
| } |
| out.print(")"); |
| } |
| out.print(":\n"); |
| if (m_specificPattern != SpecificPattern::None) |
| out.print(" specific pattern: ", m_specificPattern, "\n"); |
| if (m_body->m_callFrameSize) |
| out.print(" callframe size: ", m_body->m_callFrameSize, "\n"); |
| m_body->dump(out, this); |
| } |
| |
| std::unique_ptr<CharacterClass> anycharCreate() |
| { |
| auto characterClass = makeUnique<CharacterClass>(); |
| characterClass->m_ranges.append(CharacterRange(0x00, 0x7f)); |
| characterClass->m_rangesUnicode.append(CharacterRange(0x0080, UCHAR_MAX_VALUE)); |
| characterClass->m_characterWidths = CharacterClassWidths::HasBothBMPAndNonBMP; |
| characterClass->m_anyCharacter = true; |
| return characterClass; |
| } |
| |
| void CharacterClass::copyOnly8BitCharacterData(const CharacterClass& other) |
| { |
| RELEASE_ASSERT(!m_table); |
| |
| m_strings.clear(); |
| m_matches.clear(); |
| m_ranges.clear(); |
| m_matchesUnicode.clear(); |
| m_rangesUnicode.clear(); |
| m_characterWidths = CharacterClassWidths::Unknown; |
| m_tableInverted = false; |
| m_anyCharacter = false; |
| m_inCanonicalForm = other.m_inCanonicalForm; |
| |
| for (auto match : other.m_matches) |
| m_matches.append(match); |
| |
| for (auto range : other.m_ranges) |
| m_ranges.append(range); |
| |
| for (auto match : other.m_matchesUnicode) { |
| if (match <= 0xff) |
| m_matchesUnicode.append(match); |
| } |
| |
| for (auto range : other.m_rangesUnicode) { |
| if (range.begin <= 0xff) |
| m_rangesUnicode.append(CharacterRange(range.begin, std::min<char32_t>(range.end, 0xff))); |
| } |
| |
| m_table = other.m_table; |
| m_tableInverted = other.m_tableInverted; |
| |
| if (m_matches.isEmpty() && m_matchesUnicode.isEmpty() |
| && m_ranges.size() == 1 && m_rangesUnicode.size() == 1 |
| && !m_ranges[0].begin && m_rangesUnicode[0].end == 0xff |
| && m_ranges[0].end == m_rangesUnicode[0].begin - 1) |
| m_anyCharacter = true; |
| } |
| |
| } } // namespace JSC::Yarr |
| |
| WTF_ALLOW_UNSAFE_BUFFER_USAGE_END |