blob: 63e1e6bff3f7301e4bfeeea69272b4fe5aca6915 [file] [log] [blame] [edit]
#!/usr/bin/env python3
import argparse
import functools
import pathlib
import re
import statistics
import sys
import tempfile
import numpy
import pandas
import plotly.express
import tabulate
def parse_lnt(lines, aggregate=statistics.median):
"""
Parse lines in LNT format and return a list of dictionnaries of the form:
[
{
'benchmark': <benchmark1>,
<metric1>: float,
<metric2>: float,
...
},
{
'benchmark': <benchmark2>,
<metric1>: float,
<metric2>: float,
...
},
...
]
If a metric has multiple values associated to it, they are aggregated into a single
value using the provided aggregation function.
"""
results = {}
for line in lines:
line = line.strip()
if not line:
continue
(identifier, value) = line.split(' ')
(benchmark, metric) = identifier.split('.')
if benchmark not in results:
results[benchmark] = {'benchmark': benchmark}
entry = results[benchmark]
if metric not in entry:
entry[metric] = []
entry[metric].append(float(value))
for (bm, entry) in results.items():
for metric in entry:
if isinstance(entry[metric], list):
entry[metric] = aggregate(entry[metric])
return list(results.values())
def plain_text_comparison(data, metric, baseline_name=None, candidate_name=None):
"""
Create a tabulated comparison of the baseline and the candidate for the given metric.
"""
data = data.replace(numpy.nan, None) # avoid NaNs in tabulate output
headers = ['Benchmark', baseline_name, candidate_name, 'Difference', '% Difference']
fmt = (None, '.2f', '.2f', '.2f', '.2%')
table = data[['benchmark', f'{metric}_0', f'{metric}_1', 'difference', 'percent']]
# Compute the geomean and report on their difference
geomean_0 = statistics.geometric_mean(data[f'{metric}_0'].dropna())
geomean_1 = statistics.geometric_mean(data[f'{metric}_1'].dropna())
geomean_row = ['Geomean', geomean_0, geomean_1, (geomean_1 - geomean_0), (geomean_1 - geomean_0) / geomean_0]
table.loc[table.index.max() + 1] = geomean_row
return tabulate.tabulate(table.set_index('benchmark'), headers=headers, floatfmt=fmt, numalign='right')
def create_chart(data, metric, subtitle=None, series_names=None):
"""
Create a bar chart comparing the given metric across the provided series.
"""
data = data.rename(columns={f'{metric}_{i}': series_names[i] for i in range(len(series_names))})
title = ' vs '.join(series_names)
figure = plotly.express.bar(data, title=title, subtitle=subtitle, x='benchmark', y=series_names, barmode='group')
figure.update_layout(xaxis_title='', yaxis_title='', legend_title='')
return figure
def produce_kpis(data, noise, extrema, series, series_names, meta_candidate, title):
addendum = f"{noise}% noise threshold, based on {len(data)} benchmarks"
top_addendum = f"by >= {extrema}%, {noise}% noise threshold, based on {len(data)} benchmarks"
headers = [title if title else '']
columns = [[
f'Benchmarks where {meta_candidate} is faster than {series_names[0]} ({addendum})',
f'Neutral benchmarks ({addendum})',
f'Benchmarks where {meta_candidate} is slower than {series_names[0]} ({addendum})',
f'Worst performers ({top_addendum})',
f'Best performers ({top_addendum})',
]]
fmt = [None]
def compute_kpis(base, cand):
diff = data[cand] - data[base]
pct = diff / data[base]
faster = data[(data[base] > data[cand]) & (pct.abs() > noise)]
neutral = data[pct.abs() <= noise]
slower = data[(data[base] < data[cand]) & (pct.abs() > noise)]
worst = data[(data[base] < data[cand]) & (pct.abs() >= extrema)]
best = data[(data[base] > data[cand]) & (pct.abs() >= extrema)]
return list(map(lambda k: len(k) / len(data), [faster, neutral, slower, worst, best]))
baseline = series[0]
for (i, candidate) in enumerate(series[1:], start=1):
kpis = compute_kpis(baseline, candidate)
if i > 1: # after the first series, also generate a relative difference
previous_kpis = columns[-1]
rel_deltas = [(kpis[k] - previous_kpis[k]) / previous_kpis[k] for k in range(len(kpis))]
headers.append('rel Δ')
columns.append(rel_deltas)
fmt.append('+.2%')
headers.append(series_names[i])
columns.append(kpis)
fmt.append('.2%')
rows = list(zip(*columns))
print(tabulate.tabulate(rows, headers=headers, floatfmt=fmt))
def main(argv):
parser = argparse.ArgumentParser(
prog='compare-benchmarks',
description='Compare the results of multiple sets of benchmarks in LNT format.',
epilog='This script depends on the modules listed in `libcxx/utils/requirements.txt`.')
parser.add_argument('files', type=argparse.FileType('r'), nargs='+',
help='Path to LNT format files containing the benchmark results to compare. In the text format, '
'exactly two files must be compared.')
parser.add_argument('--output', '-o', type=pathlib.Path, required=False,
help='Path of a file where to output the resulting comparison. If the output format is `text`, '
'default to stdout. If the output format is `chart`, default to a temporary file which is '
'opened automatically once generated, but not removed after creation.')
parser.add_argument('--metric', type=str, default='execution_time',
help='The metric to compare. LNT data may contain multiple metrics (e.g. code size, execution time, etc) -- '
'this option allows selecting which metric is being analyzed. The default is `execution_time`.')
parser.add_argument('--filter', type=str, required=False,
help='An optional regular expression used to filter the benchmarks included in the comparison. '
'Only benchmarks whose names match the regular expression will be included.')
parser.add_argument('--sort', type=str, required=False, default='benchmark',
choices=['benchmark', 'baseline', 'candidate', 'percent_diff'],
help='Optional sorting criteria for displaying results. By default, results are displayed in '
'alphabetical order of the benchmark. Supported sorting criteria are: '
'`benchmark` (sort using the alphabetical name of the benchmark), '
'`baseline` (sort using the absolute number of the baseline run), '
'`candidate` (sort using the absolute number of the candidate run), '
'and `percent_diff` (sort using the percent difference between the baseline and the candidate). '
'Note that when more than two input files are compared, the only valid sorting order is `benchmark`.')
parser.add_argument('--format', type=str, choices=['text', 'chart', 'kpi'], default='text',
help='Select the output format. `text` generates a plain-text comparison in tabular form, `chart` '
'generates a self-contained HTML graph that can be opened in a browser, and `kpi` generates a '
'summary report based on a few KPIs. The default is `text`.')
parser.add_argument('--open', action='store_true',
help='Whether to automatically open the generated HTML file when finished. This option only makes sense '
'when the output format is `chart`.')
parser.add_argument('--series-names', type=str, required=False,
help='Optional comma-delimited list of names to use for the various series. By default, we use '
'Baseline and Candidate for two input files, and CandidateN for subsequent inputs.')
parser.add_argument('--subtitle', type=str, required=False,
help='Optional subtitle to use for the chart. This can be used to help identify the contents of the chart. '
'This option cannot be used with the plain text output.')
parser.add_argument('--noise-threshold', type=float, required=False,
help='Noise threshold used by KPIs to determine noise. This is a floating point number between '
'0 and 1 that represents the percentage of difference required between two results in order '
'for them not to be considered "within the noise" of each other.')
parser.add_argument('--top-performer-threshold', type=float, required=False, default=0.5,
help='Threshold percent used by KPIs to determine top (and worst) performers. This is a floating '
'point number between 0 and 1 that represents the percentage of difference required to consider '
'a benchmark to be a top/worst performer. For example, if this number is 0.5, we consider top/worst '
'performers in the data to be benchmarks that have at least 50%% of difference between the baseline '
'and the candidate.')
parser.add_argument('--meta-candidate', type=str, required=False,
help='The name to use for the candidate when producing a KPI report. Required for --format=kpi.')
parser.add_argument('--discard-benchmarks-introduced-after', type=str, required=False,
help='Discard benchmarks introduced after the given candidate. This is useful to stabilize reports '
'when new benchmarks are introduced as time goes on, which would change the total number of '
'benchmarks and hence appear to retroactively change the report for previous candidates. '
'If used, the name used here must correspond to the name of a series (as passed to or defaulted '
'via `--series-names`.')
args = parser.parse_args(argv)
# Validate arguments (the values admissible for various arguments depend on other
# arguments, the number of inputs, etc)
if args.format == 'text':
if len(args.files) != 2:
parser.error('--format=text requires exactly two input files to compare')
if args.subtitle is not None:
parser.error('Passing --subtitle makes no sense with --format=text')
if args.open:
parser.error('Passing --open makes no sense with --format=text')
if args.format == 'kpi':
if args.open:
parser.error('Passing --open makes no sense with --format=kpi')
if args.noise_threshold is None:
raise parser.error('--format=kpi requires passing a --noise-threshold')
if args.meta_candidate is None:
raise parser.error('--format=kpi requires passing a --meta-candidate')
if len(args.files) != 2 and args.sort != 'benchmark':
parser.error('Using any sort order other than `benchmark` requires exactly two input files.')
if args.series_names is None:
args.series_names = ['Baseline']
if len(args.files) == 2:
args.series_names += ['Candidate']
elif len(args.files) > 2:
args.series_names.extend(f'Candidate{n}' for n in range(1, len(args.files)))
else:
args.series_names = args.series_names.split(',')
if len(args.series_names) != len(args.files):
parser.error(f'Passed incorrect number of series names: got {len(args.series_names)} series names but {len(args.files)} inputs to compare')
# Parse the raw LNT data and store each input in a dataframe
lnt_inputs = [parse_lnt(file.readlines()) for file in args.files]
inputs = [pandas.DataFrame(lnt).rename(columns={args.metric: f'{args.metric}_{i}'}) for (i, lnt) in enumerate(lnt_inputs)]
# Join the inputs into a single dataframe
data = functools.reduce(lambda a, b: a.merge(b, how='outer', on='benchmark'), inputs)
# If we have exactly two data sets, compute additional info in new columns
if len(lnt_inputs) == 2:
data['difference'] = data[f'{args.metric}_1'] - data[f'{args.metric}_0']
data['percent'] = data['difference'] / data[f'{args.metric}_0']
if args.filter is not None:
keeplist = [b for b in data['benchmark'] if re.search(args.filter, b) is not None]
data = data[data['benchmark'].isin(keeplist)]
# Sort the data by the appropriate criteria
if args.sort == 'benchmark':
data = data.sort_values(by='benchmark')
elif args.sort == 'baseline':
data = data.sort_values(by=f'{args.metric}_0')
elif args.sort == 'candidate':
data = data.sort_values(by=f'{args.metric}_1')
elif args.sort == 'percent_diff':
data = data.sort_values(by=f'percent')
if args.format == 'chart':
figure = create_chart(data, args.metric, subtitle=args.subtitle, series_names=args.series_names)
do_open = args.output is None or args.open
output = args.output or tempfile.NamedTemporaryFile(suffix='.html').name
plotly.io.write_html(figure, file=output, auto_open=do_open)
elif args.format == 'kpi':
if args.discard_benchmarks_introduced_after is not None:
index = args.series_names.index(args.discard_benchmarks_introduced_after)
series_to_filter = [f'{args.metric}_{i}' for i in range(index+1, len(lnt_inputs))]
for candidate in series_to_filter:
first_candidate = f'{args.metric}_1'
data = data[~(data[first_candidate].isna() & data[candidate].notna())]
produce_kpis(data, noise=args.noise_threshold,
extrema=args.top_performer_threshold,
series=[f'{args.metric}_{i}' for i in range(len(lnt_inputs))],
series_names=args.series_names,
meta_candidate=args.meta_candidate,
title=args.subtitle)
else:
diff = plain_text_comparison(data, args.metric, baseline_name=args.series_names[0],
candidate_name=args.series_names[1])
diff += '\n'
if args.output is not None:
with open(args.output, 'w') as out:
out.write(diff)
else:
sys.stdout.write(diff)
if __name__ == '__main__':
main(sys.argv[1:])